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Streszczenie

Rozprawa jest podzielona na dwie czes$ci dotyczace dosé niezaleznych ob-
szaroOw badan w geometrycznej teorii grup.

W pierwszej czeSci pracy badamy obliczalne aspekty sredniowalnosci.
Dowodzimy obliczalna wersje twierdzenia Halla o haremach i korzystamy z
niego by udowodni¢ obliczalna wersje twierdzenia o Alternatywie Tarskiego.
Ponadto, udowadniamy nowa wersje twierdzenia Halla o haremach, gdzie otrzy-
mane skojarzenie jest realizowane jako funkcja o pewnych dodatkowych wtas-
nosciach. Stosujac te wersje dla niesredniowalnych przestrzeni zgrubnych
otrzymujemy obliczalna wersje generalizacji twierdzenia Whyte’a wprowad-
zonej przez Schneidera.

Druga czes¢ dotyczy lokalnie eliptycznych dziatan grup na jednospdjnych
kompleksach matych skreslen. W szczegdlnosci dowodzimy, ze podgrupy
torsyjne grup o C(6), C(4)-T(4) lub C(3)-T(6) prezentacji matych skreslen,
sa skonczonymi grupami cyklicznymi. Jest to wniosek z ogdlniejszego wyniku
o istnieniu punktow statych dla lokalnie eliptycznych dziatan grup na jed-
nospojnych kompleksach matych skreélenn. Przedstawiamy zastosowanie tego
wyniku dla automatycznej cigglosci. Ponadto zauwazamy, ze dla jednospojnych
kompleksow C'(3)-T'(6) mozna wprowadzi¢ metryke CAT(0). Ten fakt pozwala
uzyska¢ mocniejsze wyniki w przypadku C(3)-7'(6). Wynika rowniez z niego,
ze grupy dzialajace na jednospojnych kompleksach C(3)-T'(6) z ograniczeniem
rzedow stabilizatorow komoérek spetniaja Alternatywe Titsa.






Abstract

The thesis is divided into two parts which correspond to two relatively
independent areas of geometric group theory.

In the first part we study computable aspects of amenability. We prove a
computable version of Hall’s harem Theorem and use it to prove a computable
versions of Tarski’s Alternative Theorem. Moreover we also prove a new version
of Hall’s Harem theorem where the final matching is realized by a function
with additional properties. We apply it to non-amenable computable coarse
spaces to obtain a computable version of Schneider’s generalization of Whyte’s
Theorem.

In the second part is devoted to locally elliptic actions of groups on simply
connected small cancellation complexes. In particular, we prove that torsion
subgroups of groups defined by C(6), C(4)-1'(4), or C(3)-7'(6) small cancel-
lation presentations are finite cyclic groups. This follows from a more general
result on the existence of fixed points for locally elliptic actions of groups
on simply connected small cancellation complexes. We present an application
concerning automatic continuity. We also observe that simply connected C(3)—
T(6) complexes may be equipped with a CAT(0) metric. This allows us to get
stronger results on locally elliptic actions in that case. It also implies that the
Tits Alternative holds for groups acting on simply connected C(3)-7'(6) small
cancellation complexes with a bound on the order of cell stabilisers.



Podziekowania

Chciatbym podziekowaé¢ mojemu promotorowi prof. dr. hab. Aleksandrowi
Iwanowowi, za wprowadzenie w $wiat nauki, nieoceniong ilo$¢ czasu poswie-
cong mi przez lata wspolpracy oraz za pomoc bez ktorej zapewne bym tutaj
nie dotart.

Chciatbym réwniez podziekowaé promotorowi pomocniczemu, dr. Damianowi
Osajdzie, za wprowadzenie w tematyke niedodatniej krzywizny, za caly czas
poswiecony na pomoc w opracowywaniu moich wynikéw oraz za wszelkie okazje

do wyjazdow, ktore miatem dzieki niemu.

No i dy¢ jeszcze mej cotkiy familie, zeScie ciyngiym som sam kaj mie was trza.
Bo skuli was zech tego ni zmascit.

Mym rodzicom, boscie mie richtig gryfnie wyrychtowali.

I mej freli, co przaja jej fest. Przeca ino bez cie zZech poradzit strzymacd.



Contents

1__Introductionl 11
I Computable aspects of amenability]| 15
2__Preliminaries for Part [ 17
2.1 Hall’'s Harem Theorem| . . . . . . . . . . . . ... .. ... ...... 17
2.2 ‘Tarski's Alternative Theorem| . . . . . . . . . .. ... 0L 18
2.3 Geometric Von Neumann Conjecture| . . . . . . . . .. ... ... .. 19

3 Computable paradoxical decompositions| 21
3.1  Computable version of Hall’s Harem Theorem| . . . . . . . . ... .. 21
3.2 Computable version of Tarski's Alternative Theorem| . . . . . . . .. 22
3.2.1 Case of pseudogroups| . . . . . .. ... . ... ... ... 22

3.2.2 Caseof groups| . . . . ... ... ..o 23

4 Computable version of Schneider-Whyte’s Theorem 25
4.1  Preliminaries forpart I|. . . . .. . . . .. ... .. L. 25
[4.1.1  Structure of the chapter| . . . . . . . ... ... ... ... . 25

412 Reflections] . ... ... ... L o 26

4.1.3  Controlled sizes ot cycles. Main theorem| . . . . . . . . .. .. 26

4.1.4 Notation used in the constructionl. . . . . . . . . .. ... .. 27

A2 The constructionl . . . . . . . . . . ... ... 28
421 Stepl,part 1. .. ... ... .. ... .. 28

422 Stepl,part 2. .. ... ... . ... 29

423 Stepn+l,part ] . ... ... ... ... ... ... 31

424 Stepn+l,part 2 . . . ..o 32

.25 Case(3)andtheend[. .. .. ... ... ... ... ... .. 34

A3 Technical Lemmasl . . . . .. ... ... ... .. ... .. ...... 36
44 Prootsof Claimsl . . . . . . . .. .. 39
HAT Parbdl . . o oo 39

4.4.2 Notation used in proof of Lemmald.4.5. . . . . ... ... .. 42

HA3 Part 2 . . . ..o 43

Uo Proof of the Main Theorem| . . . . . . . . ... ... ... .. 45
4.6  Computable entourages of coarse spaces| . . . . . . .. .. ... ... 47

9



10 CONTENTS

(I  Locally elliptic actions on small cancellation complexes| 51
B Prelim o5 Tor P I 53
5.1 Small Cancellation Theory|. . . . . . .. ... ... ... ... ... 53
6.2 Quadric complexes and quadrization of a complex|. . . . . . . .. .. 56
5.3 Systolic complexes and Wise complex|. . . . ... .. ... ... ... 60

|6 Torsion subgroups of small cancellation groups| 63
6.1  Description of the results|. . . . . .. .. ... ... ... ....... 63
02 Curvaturel . . . . . . ..o 65
6.3 Combining geodesics| . . . . . . . . . ... 68
6.3.1 C(4)-T(4)case|. . . . ... 68

6.3.2 C(6)case. . ... ... 72

6.4 Rotations . . . . . . . . . . . . 77
6.41 C(4)-T(4) case|. . . . ... 7

6.4.2 C(6) case). . . .. ... 7

6.5 Existence of elements of infinite order] . . . . . . ... ... ... 78
6.6 C(3)-1T(6)is CAT(O)[. . . . . .. .. . ... . ... 81
0.7 Proots of TheoremsllI.2landlIl6l . . ... ... ... ... .. .. 82
6.8 Proof of Theorem LI . . .. ... ... ... .. ... ... ..... 84

(III  Appended paper]| 93




Chapter 1

Introduction

The topic of this dissertation is divided into two parts which correspond to two
relatively independent areas of geometric group theory. However both areas arise
from the topic of amenability. The fundamental idea of the latter (in a simplified
form) is as follows. Let X be a set and let G be a group which acts on X by
permutations. Then the G-space (G, X) is called amenable if there exists a mean
m : £°(X) — R which is invariant under the action of G. In particular, if X = G,
then the group G is called amenable. This definition is due to to J. von Neumann
[Neu29|.

The theme already existed before 1929. In the 1920s and 1930s Banach and Tarski
investigated the question when invariant means of G-spaces exist. Their study led
to the Banach-Tarski Paradox [BT24| and the theory of paradoxical decompositions.
In particular in 1938, Tarski proved his famous Tarski Alternative Theorem |Tar38|,
stating that a G-space X is amenable if and only if X does not admit a G-paradoxical
decomposition.

The first part of this dissertation concerns possible computable version of the
Tarski Alternative Theorem. It follows the trends of modern mathematical logic of
analysis of classical mathematical topics (for example amenability) from the point of
view of complexity of various types (see [Kec91|, [BK96|, [KPT05], [MU16|, [CK1§],
[HPPO§|, [HKP22| and [HKP]). The idea of investigation of computable aspects of
amenability is very natural and recently it appeared independently both in com-
putability theory [Bie+12|, [Morl8| and in group theory [Cavl7|, [Cav1§].

One of versions of the Tarski Alternative Theorem considered in this part is
particularly interesting since it has the same root with the second part of the disser-
tation.

To describe this we mention that in [Neu29] J. von Neumann also proved that
amenable group cannot contain a subgroup isomorphic to the two generated free
group 2. The question whether the converse holds i.e. whether each non-amenable
group contains a subgroup isomorphic to Fa, became popularized as the von Neu-
mann Conjecture in the late 50s (see e.g. [Day57]). It was answered negatively
with the construction of Tarski monster group by Olshanskii in 1980 [Ol'81]. On
the other hand, in 1999 Whyte [Why99| proved so called the geometric version of
this conjecture and in 2018 Schneider [Sch18| generalized Whyte’s theorem to coarse
spaces. The main (the most difficult) result of the first part of the dissertation is a
computable version of Schneider’s theorem. An additional goal of this part was to

11



12 CHAPTER 1. INTRODUCTION

obtain a computable version of the Hall Harem Theorem |[CSC10, Theorem H.4.2.].
This is motivated by the well-known fact that aforementioned classical results can
be obtained by applications of this theorem.

There are some classes of groups where the von Neumann conjecture is true, for
example the class of finitely generated linear groups. This is due to the theorem of
Tits [Tit72], that each such group contains a free nonabelian subgroup or is virtu-
ally solvable and hence amenable. The term Tits Alternative usually refers to the
property that all finitely generated subgroups are either virtually solvable or contain
a nonabelian free group. It is believed (see e.g. [Bes00, Quest 2.8], [Bri06],|Bri07,
Quest 7.1],|FHT11, Prob 12],[Capl4, §5|) that the Tits Alternative is common among
‘non-positively curved’ groups. However up to now it has been shown only for a few
particular classes of groups. Most notable, for: Gromov-hyperbolic groups [Gro87],
mapping class groups [Iva84; McC85|, Out(F,,) [BFH00; BFHO05|, CAT(0) cubical
groups [SWO05|, groups acting on a 2-dimensional CAT(0) complexes |[OP22] and
groups acting properly on 2-dimensional recurrent complexes [OP21].

The second part of the topic of this dissertation concerns questions related to
the Tits Alternative for a class of “nonpositively curved” groups, namely for groups
acting on simply connected small cancellation complexes. More precisely it concerns
locally elliptic actions on small cancellation complexes.

An action of G by isometries on a metric space X is elliptic if the orbit of each
x € X is bounded. An action of G on X is locally elliptic if for each g € G the action
of the cyclic subgroup (g) is elliptic. Observe that actions of finite groups are always
elliptic and hence actions of torsion groups (that is groups where every element has
finite order) are locally elliptic.

In the case we consider, having a bounded orbit is equivalent to having a fixed
point. Therefore ‘locally elliptic’ can be thought of as ‘every group element fixes a
point’ and ‘elliptic’ means ‘having a global fixed point’.

Recently Haettel and Osajda suggested the following:

Meta-Conjecture. [HO21] Every locally elliptic action of a finitely generated group
on a finite-dimensional nonpositively curved complez is elliptic. In particular, every
action of a finitely generated torsion group on such a complex is elliptic.

There are examples of finitely generated subgroups of torsion groups that are not
virtually solvable. Clearly, such groups do not satisfy the Tits Alternative. Therefore,
excluding infinite torsion subgroups might be seen as a first step towards establishing
the alternative. We address this question in the small cancellation case showing that
torsion subgroups of groups defined by small cancellation presentations are finite
cyclic groups. Our approach to this is from the direction of the Meta-Conjecture
above: we show that locally elliptic actions on small cancellation complexes which
are free on the 1-skeleton are elliptic. This applies to an action of a group on its
Cayley complex. We also provide application of the non-existence of infinite torsion
subgroups to the automatic continuity.

In a specific case of C(3)-T(6) small cancellation groups we observe that the
associated complexes might be equipped with a CAT(0) metric. Therefore, we are
able to apply existing results on 2-dimensional CAT(0) complexes to obtain stronger
results about locally elliptic actions, and we are able to conclude the Tits Alternative
for groups acting properly on C(3)-T(6) small cancellation complexes.
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The structure of the dissertation. The goal of the first part of the doctoral
thesis is to obtain computable versions of Tarski’s Alternative Theorem and Schneider
version of Whyte’s Theorem. One of the most important tools in the proofs of these
theorems is Hall’s Harem theorem, and consequently the major goal of this part of
the thesis is investigation of computable versions of Hall’s Harem Theorem.

The first part of the doctoral thesis consists of Chapters 2 - 4. In Chapter 2 we
give necessary preliminaries, where we describe basic ideas of the subject. In Chapter
3 we give a brief report on the main results of the appended paper [DI22a]. Chapter 4
is devoted to versions of Hall’s harem theorem and applications to Schneider-Whyte’s
theorem.

The goal of the second part of the dissertation is investigation of the Meta-
Conjecture in the case of the groups acting on C(6), C(4)-T'(4), and C(3)-T(6) small
cancellation complexes. It consists of Chapters 5 - 6. Chapter 5 gives necessary
preliminaries concerning the small cancellation theory. Chapter 6 is devoted to a
version of Meta-Conjecture in the case of the groups acting on C(6), C'(4)-1'(4),
and C(3)-T(6) small cancellation complexes with an additional assumption of the
freeness of the action on 1-skeleton, and applications of that results.
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Chapter 2

Preliminaries for Part I

The material which is introduced in this chapter mostly appear in the appended
paper [DI22a]. We give it here for the convinience of the reader, because it will be
used in Chapter 4 too. In Section we introduce Hall’s Harem Theorem. Section
[2.2] concerns paradoxical decompositions and Tarski’s Alternative Theorem. Section
[2.3]is devoted to Whyte’s Theorem and its generalization to the case of coarse spaces
by Schneider.

2.1 Hall’s Harem Theorem

We mostly follow the notation of |[CSC10]. A graph I' = (T', F) is called a bipartite
graph if the set of vertices I' is partitioned into sets U and V in such a way, that
the set of edges F is a subset of U x V. We denote such a bipartite graph by
= (UV,E).

Let I' = (U, V, E). We will say that an edge (u,v) is incident to vertices u and v.
In this case we say that u and v are adjacent. When two edges (u,v), (u/,v") € E have
a common incident vertex we say that (u,v), (u/,v") are also adjacent. A sequence
x1,T2,...,%y is called a path if each pair x;, z;41 is adjacent, 1 <17 < n.

Below we will denote the set of vertices I' by the same letter with the graph as
a structure, i.e. I". Given a vertex x € ' the neighbourhood of x is a set

Nr(z)={y el : (z,y) € E}.

For subsets X C U and Y C V, we define the neighbourhood Np(X) of X and the
neighbourhood Np(Y) of Y by

Np(X) = |J Nr(z) and Np(Y) = | J Nr(y).
zeX yey

We drop the subscript I' if it is clear from the context.

For a given vertex v a star of v is a subgraph S = ({v} U Np(v), E') of ', with
E' = ({v} UNp(v)) x {v} UNp(v))) N E. A (1,k)-fan is a subset of E consisting
of k edges incident to some vertex u € U. We say that u is the root of the fan, and
when (u,v) belongs to the fan we call v a leaf of it.

Definition 2.1.1. An (1, k)-matching from U to V is a collection M of pairwise
disjoint (1, k)-fans.

17



18 CHAPTER 2. PRELIMINARIES FOR PART 1

The (1, k)-matching M is called left perfect (resp. right perfect) if each vertex
from U is a root of a fan from M (resp. each vertex from V belongs to exactly one
fan of M). The (1, k)-matching M is called perfect if it is both left and right perfect.

We often view an (1, k)-matching as a bipartite graph M where the fan of v € U
is the M-star of u, i.e. a graph consisting of the set of all vertices adjacent to w in
M and all edges incident to u in M. We emphasize that a perfect (1, k)-matching
from U to V is a set M C FE satisfying following conditions:

(1) each vertex u € U there exists exactly k vertices vy,...vx € V such that
(u,v1), ..., (u,vx) € M;

(2) for all v € V there is an unique vertex u € U such that (u,v) € M.

Originally the Hall’s Marriage Theorem (see e.g. |Di1e97, Theorem 2.1.2],|Bol79,
Section II1.3], [LP86, Theorem 2.4.2.]) provides us a condition for existence of left
perfect (1,1)-matching in a finite bipartite graph. We are interested in so called
Hall’s Harem theorem, which is a generalization of Hall’s Marriage theorem to the
case of perfect (1, k)-matchings for the locally finite infinite graphs.

One says that graph I' = (V, E) is locally finite if for all vertices = € T, the
neighbourhood N (x) is finite. Note that if T" is locally finite, then N(X) is finite for
any finite X C V.

Theorem 2.1.2 (Hall’s Harem theorem). [CSC10, Theorem H.4.2.] LetT = (U, V, E)
be a locally finite graph and let k € N, k > 1. The following conditions are equivalent:

(1) For all finite subsets X C U, Y C V the following inequalities holds: |N(X)| >
KIX] INY)| = 3]V

(i) T has a perfect (1, k)-matching.

The first condition in this formulation is known as Hall’s k-harem condition.

It is a crucial fact that the theorem holds for locally finite infinite graphs. Since
infinity is necessary for applications which we are interested in, it was very surprising
for the author to discover in a standard textbook for Graph Theory the following
quotation: "The study of infinite graphs is an attractive, but often neglected, part of
graph theory." ([Die97, p.209]). At this point we inform the reader that the statement
of the Hall Marriage Theorem does not work for infinite graphs in general (see e.g.
[Die97, S.2 Ex.6]). Nevertheless there are versions of this theorem for graphs of any
cardinality [Aha8§|.

2.2 Tarski’s Alternative Theorem

Hall’s Harem theorem is useful in paradoxical decompositions. To describe it we
start with the basic definition.

Definition 2.2.1. Let X be a set and let G be a group which acts on X by permu-
tations.

The G-space (G, X) has a paradoxical G-decomposition, if there exists a
finite set K C G and families (Ag)rer, (Bk)kex of subsets of X such that

e (L) - (Y +)- (%)
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Theorem 2.2.2. Let X be a set and let G be a group which acts on X by permuta-
tions. The following are equivalent:

e G-space (G, X) is amenable;
e G-space (G, X) has no paradozical decomposition.

In the 50s Fglner [Fg55] introduced the following condition and proved its equiv-
alence to amenability.

Definition 2.2.3. Let X be a set and let G be a group which acts on X by per-
mutations. The G-space (G, X) satisfies Folner condition if for every finite subset
K C G and every real number € > 0, there exists a nonempty finite subset ' C X
such that:

W‘\P,]Tﬂ<af0rallk€K.

Such a subset F' is called an e-Fglner set with respect to K.

Modern versions of the proof of the Tarski’s alternative theorem use the fact
that by Fglner’s condition of amenability, the G-space (G, X) is not amenable if and
only if there exists a finite K C G and n such that there are no %—F@lner sets with
respect to K. Knowing K and n, we can construct a bipartite graph I with sets of
vertices being two copies of X. By the Hall’s Harem Theorem there exists a perfect
(1,2)-matching in T which corresponds to the paradoxical G-decomposition of X.

2.3 Whyte’s geometric solution to the von Neumann Con-
jecture

As mentioned in the introduction, in its original formulation the von Neumann con-
jecture has been answered negatively by Olshanskii. Nevertheless, Whyte showed
that geometric version of this conjecture is true. Before stating Whyte’s Theorem,
we recall some definitions.

Definition 2.3.1. A metric space (X, d) is uniformly discrete if there exists r > 0
such that d(z1,z2) <1 = 21 = x9.

Definition 2.3.2. A uniformly discrete space X has bounded geometry if for all r
there is N, € N such that for any = € X |B,(x)| < N,.

Let us fix two metric spaces X and Y.

Definition 2.3.3. A function f : X — Y is called bilipschitz if there exist k € R
such that %d(l‘l,l‘z) < d(f(x1), f(z2)) < kd(x1, z2).

For A € X we define:

Oh(A)={r e X\ A |dxz,A) <r}
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Definition 2.3.4. The space X is amenable if and only if there exists a family
S; € X, ¢ € N such that for any » > 0
Or (S;
1.5

1—+00 ‘SZ’

=0

We now formulate the theorem of Whyte.

Theorem 2.3.5 (Geometric Von Neumann Conjecture). A uniformly discrete metric
space of uniformly bounded geometry is non-amenable if and only if it admits a
partition whose pieces are bilipschitz equivalent to the 4-regular tree with uniform
lipschitz constant.

Recently, Schneider [Sch18|, generalized this result to the case of non-amenable
coarse spaces. We recall some terminology from the coarse geometry. For the relation
EFECXxXonaset Xandxe X,AC X, let

Elz] :=={y € z|(z,y) € E},

and

E[A] := | {Ez]|z € A}.
Furthermore, we denote by I'(F) the graph associated with the relation F, i.e.
I'E)=(X,E).
Definition 2.3.6. A coarse space is a pair (X,E) consisting of a set X, and a
collection of subsets of X x X (called entourages) such that:

o Ax €&,
o if FC E €&, then also F € &;

e if E,Fc&then EUF,E-!,EoF c&.

Definition 2.3.7. A coarse space (X, &) is said to have bounded geometry if for each
E € € and every z € X the set E[z] is finite.

Note that metric spaces are examples of coarse spaces: for a given metric space
X, a coarse space (X, &) is obtained by setting:

E:={F C X x X|sup{d(z,y)|(z,y) € E} < oo}

Definition 2.3.8. A coarse space (X, &) of a bounded geometry is called amenable
if for every 6 > 1 and every E € £ there exists a non-empty finite ' C X such that
(B[F)| < 0]F).

Theorem 2.3.9. ([Sch18]) Let d > 3. A coarse space (X,E) of bounded geometry is
not amenable if and only if there is E € € such that I'(E) is a d-regular forest.

To see why this theorem generalizes the theorem of Whyte, note that connected
components of I'(E) can be viewed as pieces of the partition from Whyte’s theorem.

In the proof of his result, Schneider takes a symmetric entourage E such that
|E(F)| > (d —1)|F| for all finite F* C X. Such an entourage exists by X being non
amenable. Then graph T' := (X, X, R), where R := E \ dx satisfies Hall’'s Harem
condition for d—1. It follows that there exists an entourage which graph is d-regular.
Moreover, properties of entourages allows us to refine it to remove all cycles without
losing d-regularity.



Chapter 3

Description of results from the
appended paper ‘Computable
paradoxical decompositions’

The appended paper [DI22a] is a part of this dissertation. In this chapter we give
a brief report on main results of this paper. In Section we state a computable
version of Hall’s Harem Theorem. Section is devoted to computable versions of
Tarski’s alternative Theorem.

3.1 Computable version of Hall’s Harem Theorem

In the first part of [DI22a] we extend the methods of Kierstead [Kie83| to prove the
computable version of Hall’s Harem Theorem. In his paper, Kierstead proved the
computable version of Hall’s Marriage Theorem (i.e. concerning left perfect (1,1)-
matchings in infinite graphs) for highly computable bipartite graphs. Just in case
we recall the following definition.

Definition 3.1.1. A partial function f : N — N is partially computable if there exist
a Turing program which computes it. The function f is computable if it is partially
computable and total.

Definition 3.1.2. Subset X of N is called computable if its characteristic function
is computable.

Following trends in logic we say computable instead of recursive. The facts from
computability theory which we use are well-known and can be found in [Soal6|.

Let I' := (V, E) be a graph and assume that the set of vertices V is identified with
N. We call graph I' = (V| E) computable if the set F is computable. A computable
graph ' = (V, E) is highly computable if there is an algorithm computing sizes of
neighbourhoods of each vertex.

A (1,d)-matching M is computable if there is an algorithm which

e for each i € U incident to edge in M, finds the tuple (i1,1i2,...,74) such that
(i,3;) € M, for all j =1,2,...,d;

e for i € V incident to edge in M, finds ¢’ € U such that (i',i) € M.

21



22 CHAPTER 3. COMPUTABLE PARADOXICAL DECOMPOSITIONS

Kierstead introduced the following condition which is sufficient to construct a
computable (1,1)-matching (which is not perfect) in a highly computable bipartite
graph:

Definition 3.1.3. A highly computable bipartite graph I' = (U, V, E)) satisfies the
computable expanding Hall’s condition ( denoted c.e.H.c.), if

e there exists computable total h : N — N

¢ h(0)=0

e for all finite sets X C U, the inequality h(n) < |X| implies n < |[N(X)| — |X|.
The following generalization of the Kierstead condition is introduced in [DI22a].

Definition 3.1.4 (Theorem 2.9 in [DI22a]). A highly computable bipartite graph
I' = (U, V, E) satisfies the computable expanding Hall’s harem condition with respect
to d (denoted c.e.H.h.c.(d)), if

e there exists computable total h : N — N;

e h(0)=0

e for all finite sets X C U, the inequality h(n) < |X| implies n < [N(X)| — d|X]|
e for all finite sets Y C V, the inequality h(n) < |Y| implies n < [N(Y)| — 1|Y.

This condition allows us to formulate a computable version of Hall’s Harem The-
orem.

Theorem I.1 (Theorem 2.9 in [DI22a]). If I' = (U,V,E) is a highly computable
bipartite graph satisfying the c.e.H.h.c.(d), then T' has a computable perfect (1,d)-
matching.

3.2 Computable version of Tarski’s Alternative Theorem

In the second part of [DI22a] we apply computable version of Hall’s Harem Theorem
to prove two computable versions of Tarski’s Alternative Theorem, one in the for-
mulation for the very general situation of the pseudogroups of transformations, and
the more precise version in the case of action of group G on space X.

3.2.1 Case of pseudogroups

A pseudogroup G of transformations of a set X is a set of bijections p : § — T
between subsets S and T' C X which satisfies some natural conditions of an action,
see Definition 1.2 in [DI22a]. For v: S — T in G, we write () for the domain S of
v and w(7y) for its range 7.

Let G be a pseudogroup of transformations of X. For R C G and A C X we
define the R-boundary of A as

OrA={rc X\A: Ipc RUR (x € a(p) and p(z) € A)}.
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Definition 3.2.1. The pseudogroup G satisfies the Fglner condition if for any finite
subset R of G and any natural number n there exists a finite non-empty subset
F = F(R,n) of X such that |0gF| < L|F|.

The following is a version of Tarski’s theorem in case of pseudogroups, see The-
orems 7 and 25 in |[CSGH99|.

e The pseudogroup G satisfies the Fglner condition if and only if there is no tuple
(X1, X2,71,72) consisting of a non-trivial partition X = X; U Xy and 7; € G
with a(v;) = X; and w(y;) = X fori =1,2.

Assume that a pseudogroup G acts on a countable set X. We will identify X
with N. We say that a transformation p : S — T from G is computable if S and T are
computable subsets of N and p is a computable function. The following definition
corresponds to Definition 3.1 in [DI22a).

Definition 3.2.2 (Definition 3.1 in [DI22a]). Let G be a pseudogroup of transforma-
tions of a set X = N. An effective paradoxical G-decomposition of (G, X) is a tuple
(X1, X2,71,72) consisting of a non-trivial partition X = X; U X5 into computable
sets and computable v; € G with a(v;) = X; and w(y;) = X for i =1, 2.

The main theorem of [DI22a] in the case of pseudogroups (Theorem 3.2) has the
following form.

Theorem 1.2 (Theorem 3.2 in [DI122a]). Let (G, X) be a pseudogroup of computable
transformations defined on N which does not satisfy Folner’s condition. Then X has
an effective paradozical G-decomposition.

3.2.2 Case of groups

Let X be a set identified with N and let G be a group which acts on X by computable
permutations. The space (G, X) has a computable paradoxical decomposition, if
there exists a finite set K C G and two families of computable sets (Ax)rek, (Bk)kek

such that:
X= (L ko)LL ) = (L ) = L )

keK

We call (K, (Ag)kek, (Br)kekx) a computable paradoxical decomposition of X, see
Definition 3.4 in [DI122a]. The following theorem is a counterpart of Theorem [[.2]in
the case of actions of groups.

Theorem 1.3 (Theorem 3.5 in [DI22a]). Let G be a group of computable permuta-
tions on a countable set X which does not satisfy Folner’s condition. Then there is
a finite subset K C G which defines a computable paradozical decomposition.

The remainder of [DI22a] concerns some complexity issues related to computable
paradoxical decompositions.

Assume that G is a computable group (i.e. a group identified with N as a set,
whose multiplication table is computable as a subset of N*). The computable group
G has a computable paradoxical decomposition, if the left action of G on G has a
computable paradoxical decomposition.

Theorem [I.3| (and Corollary 4.2 in [DI22a]) leads to the following definition.
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Definition 3.2.3 (Definition 4.3 in [DI22a]). Let
F\kF 1
Wpr = {KCGis finite : In € N (V finite F C G)(3k € K) <‘\\F\‘ > n)}
We call Wpr the set of witnesses of the Banach-Tarski paradox.

In Proposition 4.4. we describe the algorithmic complexity of QW pr and in The-
orem 4.5 we give a natural example of a computable groups with computable 2 pr.

Theorem 1.4 (Theorem 4.5 in |[DI22al). The family Wpr is computable for any
finitely generated free group.

On the other hand in [DI22b| we give an example of a finitely presented group
with decidable world problem (hence computable) where the set 2 is not com-
putable. We do not include that paper into the dissertation because of its focus on
computability theory.



Chapter 4

Computable version of
Schneider-Whyte’s Theorem

Assuming that a bipartite graph is of the form (N, N, F), where E denotes the set of
edges between natural numbers, an (1, k)-matching in such a graph clearly realizes
a k to 1 function, say f : N — N. If this matching is perfect, such a function f
is total and surjective. We study properties which can be additionally added to
such a function. The motivation follows from our work on a computable version
of Schneider-Whyte’s theorem. It turns out that in order to obtain a computable
d-regular forest, some special form of Hall’s harem theorem is required.

For a point u such that for some i # 0 we have f*(u) = u find the smallest i # 0
with fi(u) = u. Then the set {u, f(u),..., f7"!(u)} is a cycle of f. The proof of
our computable version of Schneider’s theorem uses Hall’s Harem Theorem in some
version, where we are also able to recognize all the cycles in the final matching.

The results of this chapter are taken from the preprint ‘A new computable version
of Hall’s Harem Theorem’ available at arXiv [Dud21a].

In order to avoid in this thesis computability issues as much as it is possible,
we omit the final result of [Dud2lal. We give the version of Hall’s harem theorem
which is called Main Theorem in that paper (i.e. Theorem 2.4 there). There are two
reasons for this. The first one is the conviction that a classical version of Hall’s harem
theorem with additional restrictions on f is desirable. The second reason is the fact
that the task of computability of f makes our proofs enormously complicated.

4.1 Preliminaries

4.1.1 Structure of the chapter

In Section we define reflected graphs. In Section we define functions
with controlled sizes of its cycles and formulate the Main Theorem of this chapter.
Section [£.1.4] provides a list of notation used in the construction. Section [£.2] shows
a construction. In Section we prove technical lemmas necessary for Section
In Section .4 we show that claims from Section [£.2) are true. In section [4.5] we prove
Main Theorem. In Section we explain the relation of Main Theorem with the
computable version of Schneider-Whyte’s Theorem.

25
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4.1.2 Reflections

Throughout this chapter, d is a natural number greater than 1. When I' = (U, V, E)
is a bipartite graph, we always assume that V C U C N, i.e. V is a subset of the
right copy of U.

The following notation substantially simplifies the presentation. For any vertex
v € V there exist a vertex from U which is a copy of v (i.e. the same natural number),
we denote it by u,. If a vertex u € U has the copy in V' then we denote this copy by
Uy

Definition 4.1.1. The graph I' = (U, V, E) is called U-reflected if V' is a subset of
the right copy of U and for every edge (u,v) € E with v, € V the edge (uy,vy)
is in E too. If additionally V' is a right copy of U then I' is called a fully reflected
bipartite graph.

The main theorem below states that in the case of fully reflected bipartite graphs
the Hall’s harem condition allows us to force some additional properties at the ex-
pense of obtaining a perfect (1, (d — 1))-matching instead of a (1, d)-matching. We
will now give necessary details.

4.1.3 Controlled sizes of cycles. Main theorem

Let f be a function. If for some i # 0 we have fi(u) = u then we will say that u is a
periodic point, see the introduction to this chapter. For such u and the smallest i # 0
with f(u) = u, we say that {u, f(u),..., f7"1(u)} is a cycle of f. Any (1,(d — 1))
matching can be considered as a (d — 1) to 1 function f : N — N. Moreover, if this
matching is perfect, such a function f is total and surjective. We roughly want to
show that given a fully reflected bipartite graph satisfying Hall’s d-harem condition,
there is a perfect (1,(d — 1)) matching f : N — N, such that for each u there exist
i > 0 such that f%(u) is a periodic point.

Definition 4.1.2. Let f : N — N be a (d — 1) to 1 function. We say that f has
controlled sizes of its cycles if each of the following conditions holds:

1) f21) =1
(ii) if n > 2 and f%(n) = n then i < n;

(iii) if n > 2 and for all i < n we have fi(n) # n then there exist k < 2n and [ <n
such that f**(n) = f*(n).

The following theorem is the main result of this chapter.

Theorem 4.1.3. (Main Theorem in [Dud2laf) Let I' = (U, V, E) be a locally finite
bipartite graph such that:

e both U and V are identified with N\ {0},
e E does not contain edges of the form (u,vy),
o I' is fully reflected,

o [ satisfies Hall’s d-harem condition.
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Then there exist a perfect (1,d — 1)-matching of T, which realizes a (d — 1) to 1
function f: N — N with controlled sizes of its cycles.

The proof of the theorem is based on an inductive construction of the matching.

4.1.4 Notation used in the construction

Since this construction is highly technical, we start with a list of the notation. We do
not insist on a thorough inspection of it. In the beginning a hasty view will suffice.

M is a perfect matching that we construct.

M, —1 is a set of (1,d — 1)-fans added to M at the end of the n-th step. Thus
M=) My_i.

n=1
r® = (u© v, E0)is the original graph I'.
UM ==\ {yc UV : 3 e VP (u,0) € M,_1}.
V) = V=D Ly e VD Fu € U (w,0) € M1}
™ = (@™, v™), We will see that T is U -reflected.

After the n-th step we obtain decompositions U™ = U®@* L and v =
Vr gy L where we say that UL consists of elements from U™ which
might spoil Hall’s d-harem condition for I'("™).

Put UOL = ¢ and VOL = § (since I'®) is T, i.e. it satisfies Hall’s d-harem
condition).

'™+ is a graph with the sets of vertices (U™, V{"1) and the set of edges
corresponding to (1,d — 1)-fans with roots denoted by u;- € U™,

When UM\ UMD s not empty, UM\ UPDE = {4l 1 and VWL
V=1L consists of leaves {v- | :1<i<d—1}.

n—1,1

rex .= (M \ gL v\ vy We will see that T'™* satisfies Hall’s

harem condition.

During the construction of M, we will define fans Mﬂ;, J <n+1. The graph
M, is the union of them.

M3 is a fan consisting of edges denoted by {(u, vfm) c1<d—1}.

uy, is a starting vertex of the n-th step, it is also denoted by u0.

For any subgraph I of (") by I'(—u?, ..., —ul,) we denote the graph obtained

from I by removal of (1,d — 1)-fans of M,, with roots u, ..., uj.

For any subgraph I' = (U’,V’) of T™ and any uj € U+ by F’(Jruj)
we denote the graph induced in T'™ by the sets of vertices U’ U {u]L} and
V'U{vj;:1<i<d—1}.



28 CHAPTER 4. SCHNEIDER-WHYTE’S THEOREM

e For any subgraph I" = (U’,V’) of I'™ and any vertex v € V(" by I'/(4v)
(resp. I'(—v)) we denote the graph induced in T'(™ by the sets of vertices U’
and V' U {v} (resp. V' \ {v}).

e Ml denotes a perfect (1,d)-matching in I'(™* which appears in the first part

of step n + 1.

e M2 denotes a perfect (1,d)-matching in T (—u0, ... —ud) NT™* for some
4, which appears in the second part of step n + 1.

e Elements adjacent to w™ in the matching 92 are denoted by bZLlel . z}iill.

j+1

The element vffl is a candidate for v} .

e The fan (u;, {vij |1 < j < d—1}) usually appears as a part of a fan of the
matching MM?2. We warn the reader that it is possible that u;- does not exist.

e We assume that all of these elements are natural numbers and are ordered
according to the standard ordering of the natural numbers.

4.2 The construction

We assume that I' = (U,V, E) is a bipartite graph satisfying the Hall’'s d-harem
condition, such that:

e both U and V are identified with N\ {0};
o ['is fully reflected;
e FE does not contain edges of the form (v, u,).

We now describe an inductive construction which is the heart of the proof of our
main theorem. At the end of each step we formulate some claims that certain graphs
satisfy Hall’s d-harem condition. They support further steps of the construction.

4.2.1 Step 1, part 1

We take wg, the first element of the set U (it is clear that up = 1). Using Hall’s
harem theorem we find a perfect (1, d)-matching fm(l). Let v8,1, . ,v87d be elements
of V, ordered by its numbers, such that (uo,v&i) € zm(l) for all © < d. Define the
fan M as the set of edges (ug,vo;) for i < d— 1. Let T (—ug) := (U \ {uo}, V' \
{1+ 0041}

Note that the graph T'(©)(—ug) \ {v0,} satisfies Hall’s d-harem condition, since
it obviously has a perfect (1, d)—matchiné. Furthermore, the following (more compli-
cated) statement holds too.

Claim 4.2.1. The graph I'©)(—u) satisfies Hall’s d-harem condition.

See Lemma for the proof of this claim.

Before the second part of step 1 let us discuss our local goals. Let the partial
function fo correspond to My and let T} be the graph obtained after step 1, i.e.
the part of I' after removal M,. We want to force that:
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Figure 4.1: The first part of the first step, Mi-fan of ugy in red and green, My in
green.

1. for all n € Dom(fy) there exists i such that fi(n) is a periodic point, and
2. TW is UM reflected.

It is clear that (1)-(2) are satisfied if we add the edge (U 1,%0) to the matching.
This means that f(vy,) = Uy, Le. fe(uo) = fo(fo(vuy)) = uo. We should organize
it in a clever way. 7

4.2.2 Step 1, part 2

We denote u := o and aim to add the edge (ug, vy ), to M. Note that (ud, vy,) €
IO (—ug), because (uo,v871) is in I'© and the latter one is U®-reflected. Since
IO (—ug) satisfies Hall’s d-harem condition, it has a perfect (1,d)-matching m3.
We remind the reader that 1’1571, . ,b%,d are elements of V', ordered by its numbers,

such that (ud,o},;) € M3 for all i < d. Since vy, has the lowest number in V, there
are two possible cases:

L. vy, =95, We set Vg = Vg 1 < i< d—1 (ie. vy = Vyp)-

2. vy, # 5,1 Then find the fan (u,v;) € MG, 1 < i < d, such that vy, = v (here
we assume that the ordering of v; corresponds to their indexes). We set:

. v&l = Uy, and v&i = 1')(1],2;1 for2<i<d-—-1,
and define a candidate for T'(D-L:

o Ui = u;

° @&i_l =w; for 2 <4 <d.

In either case define the fan M} as the set of edges (u}, ”é,z‘) for1<i<d-—1.



30 CHAPTER 4. SCHNEIDER-WHYTE’S THEOREM

U1

I
1 +1 1 0 0
U0,1Y0,2Yq,3 Y0,1 Yuo Yo,2, V2 U3

° ° ° 1 [ ] [ ] [ ] [ ] [ ]

Uy Uo U

Figure 4.2: Step 1, part 2. 3 is red. We aim to produce a cycle of length 2 in our
matching by adding the edge (ug,vy,). Since vy, is matched with u, we force the
situation from Figure 3.

1 +1 21 .0 1 0 ol sl
Yg,2Y4,2Yq,3 Yo,1 Yo,1%0,2, Yg1 Yo,2

[ ] [ ] ° [ ] 1 [ ] [ ] . [ ] [ ] [ ]

ug o g

Figure 4.3: M} is green. It is possible that the purple fan consisting of edges
(4, 9g1), (g, By ) will be added to T,

Put My = MJUM}. We obtain T by removal of My from T'. Since ug, vy, v8,1
and uf = 0 have been removed, I is UM reflected. It might turn out that it

does not satis:fy Hall’s d-harem condition.
Let Th = (UMW {ug}, VD {2'13:1, - @&d_l}). The following claim follows from
Lemma below.

Claim 4.2.2. At least one of F{) or M gsatisfies Hall’s d-harem condition.

If T satisfies Hall’s d-harem condition, set T(W* ;= T and UM+ = ¢, v(D+ =
0. If 'V does not satisfy Hall’s d-harem condition, set T'(V)* := Iy, and

° ué ::u&;
[ ; .
® vy, =V 1< <d—-1

o UM = {ug};

o VL = {yg;:1<i<d—1}.
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4.2.3 Step n+1, part 1

At the previous step we constructed graphs '™ and TM™* where I'™ is U™)-
reflected and T("M* satisfies Hall’s d-harem condition. Let 9t} be an (1, d)-matching
in T(* Also note that since [T\ UM=DL| < 1) there are at most n vertices u3-
in UL (see Section 2.4 for the corresponding definition).

Take uy, the first element of the set U™, In order to define M we have two
possible cases:

1. There is j such that u, = u]L € UM™L. Then we set MY to consist of all

edges of the form (uj-,vﬁ) and remove the fan with the root ujL from ()L
We redefine UM+ and V™1 accordingly (in particular uj- is removed from

UL,

2. If u,, & U™, then verify whether there is j such that (un,vgvj) € ML and
(uvgj,vun) e T+ By the definition of '™ it can happen for at most one
j. (Note here that it can also happen that v,, is not even in I'™.) If there
is such j, we set MQ to consist of (un,v%j) and d — 2 of the remaining d — 1
edges of the form (u,, vg,i) € ML (excluding the one with the greatest index).
In the case when the corresponding j does not exist, we set M to consist of
edges (up, U?L,i) e ML fori <d-—1.

The following claim follows from Lemma below.
Claim 4.2.3. Let TU*(—u,) be T (—u,) NT™*, One of the following holds:

o T(W*(—y,,) satisfies Hall’s d-harem condition;

e there exist some vertex ujL € U™ such that the graph F(”)*(—un,%—uf)
satisfies Hall’s d-harem condition.

If T("*(—u,) does not satisfy Hall’s d-harem condition, let u]L be an element
from U™+ realizing the second possibility of this claim. We remove the fan of u]L
with its leaves from (UL V(ML) and then we put it into I'™*. Thus the latter
graph (and U™+ V(1) are updated. It is clear that now the redefined T(™*(—u,,)
satisfies Hall’s d-harem condition.

Before the second part of Step n + 1 we describe the goals which we want to
achieve after the step. We want:
n
1. the partial function f,, corresponding to |J M; has controlled sizes of its cycles,

=0
and

2. the graph T'"*1Y obtained at the end of the step is U™+ Y-reflected and the
corresponding graph I'("t1* gatisfies Hall’s d-harem condition.

In order to achieve the first condition we will organize one of the the following
properties:
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0o ,1 ,2 J
7un7un7"'aun7

(i) there is a sequence of vertices u,, 1 < j < n such that each
edge (u;,vu%q)' belongs to M, and for some 0 < ¢ < j — 1 the sequence
(ul,ult, ... ud) is a cycle;

(i) there is a sequence of vertices (u®, ul u2,... ,ud), j < n such that the edges

of the form (u?,, vu:‘;1) belong to M,,, and Ui is already adjacent to some edge

n—1
from J M;;
=0

4.2.4 Step n+1, part 2

We begin by checking whether v,, belongs to '™+, If v, € I'™ then we denote
u, by uY and begin the following process of choosing the consecutive vertices u?,.

First step of iteration. Assume that for some ji,¢ we have v,, = Ulez €
V™)L Then we set

u%zujll,v}lk ::vj-lk, k<d-1,
M ={(ul,vl,):1<k<d-1}

and check whether v, € DL (=),

If it is so we repeat the iteration for v,1. Note that v, € T (=l —ul)

then.
Single step of iteration. We verify if v,m € DO (=l —ul o —um).
If it is so then for some jy, 41,7 we have v,m = Uj_m+17i e VWL Define
1
urtt =g o=t 1<k <d -1,

M= (g om) 1<k <d- 1)

and we repeat the iteration for v,m+1. This ends the single iteration step.

Since |U™L| < n, the procedure ends after at most n iterations. Therefore one
of the following cases is realized for some [ < n:

Lovg ¢ .
2. vy € '™ but Oy & I (—ul, —ul ... —ul) (this case is impossible for
L =0);

3. v, €T~

In case (1) v, was already added to M at preceding steps and condition (ii)
described before this stage is satisfied. We finish step n+1, so no cycle is constructed
at the step.

In case (2) we also finish step n+1. Note that the last iteration closes some cycle

k uﬁl) constructed at step n 4+ 1. The length of this cycle is not greater than



4.2. THE CONSTRUCTION 33

In case (3) we will construct a cycle (ul,ult!) of length 2. This is the most
complicated case. It will be considered in the next subsection. Before we start it we
give an example of a cycle obtained by construction in case (2).

Example. The following pictures show how a cycle of length 3 can be obtained
by this procedure in the graph satisfying Hall’s 3-harem condition.

1 Uy, Uu

Figure 4.4: L™+ in black, T™L in purple.

0 0 0
vn,l Un,2 Un,3
[ ) [ [ [} [ ] [ ) [ )
[ ] [ ] [ ] [ ] ] [ ] [ ] J_ [ ]
Un Uj

Figure 4.5: 9} in red and green, MY in green. We have v, = ijZ.
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0 L
(% (%
Tl”l 071’1 °
L] ° o [ ] L] ° L ﬂJ_ [ ] L]
ut Un s,
J2
Figure 4.6: M, in green. We have Uyt = Ujé,Q' Moreover Uyl = Ug,?

To show cycle on one picture, we take 4 copies of the set N. First and second

correspond to sets V and U at the part 1 of the step. Second and third correspond
to the sets V and U at the first iteration step and third and fourth correspond to
the sets U and V' at the second step of iteration.

. U%,l . .
Part 1 of step

.« . Vi,
Iteration step 1

. . Yj . .
Iteration step 2

Figure 4.7: Resulting M,, with the obtained cycle of length 3 marked in blue. Red
edge is the edge from 9} that was not added to M.

4.2.5 Case (3) and the end

In case (3) we will construct a cycle (ul, ubt!) of length 2 as follows.

Since the edge (ul,,v
applying U™-reflectedness of I'™) we see (u#l,vu%) e T (—uy,, —ul, ... —ub).

ny»'n

We start with a new term ubt! :=u

vn,l
"o ﬁll) is in ™ and Uy is not in D) (—yy, —ul .. —ub),
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Observe that since ule, ey uJLl are in UM+

T (—u,, —u) —ul) T = T (g, ) N> = D* ().

ny

We also remind the reader that by the first part of this step the graph T(™*(—u,)
satisfies Hall’s d-harem condition. Thus we can find an (1, d)-matching 92 in
L(W*(—u,). Let us fix it.

We now check whether there is j with vt = uj

If it is so, Weseti)l'H::vL for1<i<d-1.

If there is no j such that ul+1 = uL then vffll ...t will denote the

elements adjacent to u!"! under Qﬁ%
There are two cases:

A) (ulft v Uy ) € 9)?2, Le. vy = vl+1 for some 1 < k < d. In this case

ul+1

- cannot be u» for any j.

B) (ulf! v V) ¢ 92 ie. there exists some u € T'(™*(—u,), such that

Uyl = Vg for some 1 < k < d, where vy ...vq denote the elements

I+1

adJ acent to u under 912, In this case it is pos:31ble that u, coincides

with some u]L
In case we produce a cycle of length 2 by including the pair

(ubt!, v, ) into MEF. In fact we include it into M} together with

n 9
a fan with the root u/t' and (d — 2) leaves taken among vl+ . To be

+1 . _ l+1

precise we organize it as follows. If k = d, we set v,'; | = Ui for

2<i<d. If k+#dweset UIH 'zi)”-l for 1 <i<d— 1. The set M
consists of edges (ubt!, ltl) for 1 <4 <d—1. The procedure is finished.

In case E we produce a cycle of length 2 by including the pair
(u#l,vu% ) into M!*!. In fact, as in the previous case we include it
into M!+! together with a fan with the root ult and (d — 2) leaves
which Wlll be denoted U = v, and vmil = vifll,
1<:i< d 2. We define ;- := v and rename the remaining d — 1 vertices

v; to v-.. The procedure is finished. It is worth noting here that if ulF?
l+1

taken among vn i

c01nc1des w1th some uL then the vertex ©,"; does not exist, i.e the only

vertex v | from the fan of ult! would be out81de of M+,

I+1
Let M, = D M]f We obtain the graph T+ from I'(") by removal of M,,-fans.
k=0
Since for each u € U™ \ UM+ the element v, is also removed, then the graph is
U+ _reflected.
In cases (1), (2) and (3)A) we set 8 := UHD\ UL 95 .= yrtD\ y() L et
T = (4,9) and WL .= 7ML ATC+D | We note here that in cases (1) and (2) only
elements of I'(™+ were added to M, at this part of the step. Therefore in these cases
T coincides with T"*(—u,,) and satisfies Hall’s d-harem condition.
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In case (3)B) we set 4 := UCHD\ (UML U {gl}), 0 .= v+t (v)Ly {074 :
1<i<d-1}). Let T = (&) and UM .= (UL U {it}) n UMD, We define
VL accordingly: VI = (VWL y {05 1<k<d—-1})N VD and set

F(n)l_ — (U(n)J_7V(n)J_)
The following claim follows from Lemma below.
Clasm 4.2.4. At least one of the following holds:
e T satisfies Hall’s d-harem condition;

e there exists some vertex u]L € U™ such that the graph T(—é—uj) satisfies
Hall’s d-harem condition.

e there exist vertices u;-, u; 1+ € UM such that the graph T(4u;-, -I-U]L) satisfies

Hall’s d-harem condition.

Depending on the output of this claim we deﬁne the final output of step n + 1.
In the case (3)B) (ie. ex1sts) if ub # U # u (for any output of the claim),

we set u;- 1= ;- and vn L =0k mpfor 1 <k<d- 1 Otherwise, or in the remaining
cases U, Tf ;. are not defined.
In the first case of the claim we set T("+1)* := % and

Ut = (U™ U fuy ) nU™HY,
VOrDE = (VO G fopy 1<k <d—1}) NV,
In the second case we set T'("HD* .= T(—i—uj-)and
UL = (U0 (b)) U ) U0,
VDL — (VO {1 <k <d— 1) U{of 1<k <d—1})n Ve,
In the third case we set T FD* .= T (4t +uj 1) and
UL = (U9 (b)) U s }) U0,

VDL = (VO {of v 1<k <d— 1) U{vp, t 1<k <d -1} n vt

4.3 Technical Lemmas

The notation used in this section does not correspond the construction above.

Throughout this section I' = (U, V, E) denotes a bipartite graph
and 't = (UL, V1, E1) denotes its subgraph.
The graph I'* = (U*, V*, E*) is an induced subgraph of I such that

UNnU+=0=v*nv+t.

Below we always assume that d is a natural number greater than 1.
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The following situation will arise several times in our arguments in Section Let
X be a subset of V such that

1
INR(X)] 2 2],
but
1
[N (X)\ U < 71X

Thus we can conclude that Np(X) NUL # ().
The following lemma describes typical circumstances which lead to this situation.

Lemma 4.3.1. Let ' = (U, V, E) be U-reflected and let T'* be a subgraph of T induced
by the sets of vertices U* = U\ U+, V* =V \ V1. Assume that T* satisfies Hall’s
d-harem condition and assume that for each Y C U+ we have |[Npo(Y)| > (d—1)|Y].

Then for any X C V we have |Np(X)| > (d — 1)|X|. In particular |[Np(X)| >
alX|

Proof. Let Ux := {u € U : v, € X}. By U-reflectedness of I" we have |Ux| = | X|.
Consider the sets

Uy :=Ux \ Ut

and
Ux :=UxnNU™L

Using U-reflectedness of I' again, we see
[Np(X)| 2 [Np«(UX)] + INp (Ux) N V2.
Since Hall’s d-harem condition is satisfied for any subset of U*,
[Np+(Ux)| = dUx|.

Moreover we have |Np(Us) N V4| > (d — 1)|Ux|. Therefore

[Ne« (Ux)| + [Ne(Ux) 0V > (d = D)|Ux|-
Since d > 2 it follows that

INN(X)] 2 (d - DIX] > H[X]
O

This lemma cannot be applied in the situation of Part 1 of a step of the main
construction, since some vertices from a U-reflected graph are removed. In that case,
we have a graph I which is not U-reflected, but for some v € V' its subgraph I'(—v)
is U-reflected. Because of this change, in the following lemmas both I't and I'* are
subgraphs of I'(—wv).
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Lemma 4.3.2. Let v be a vertex from V and T'(—v) = (U,V(—v)). Assume that
[(—v) is U-reflected. Let T+ = (UL, VL, EL) be a subgraph of T'(—v) and let T* be
defined as the subgraph of I'(—v) induced by the sets of vertices U* := U\ U+, V* :=
V(—v)\V*.

Assume that I'* satisfies Hall’s d-harem condition and assume that for each Y C
U+t we have [Np(Y) NV > (d—1)]Y].

Then for any X CV \ {v} the inequality |Np(X)| > (d —1)|X| — 1 holds.
Moreover, the equality [Np(X)| = (d—1)|X| —1 can happen only if v € Nr(Ux) and
Nr«(Ux) =0, where Ux :={ueU :v, € X}.

Proof. By U-reflectedness of I'(—v) we have |Ux| = | X| and
INECO)I 412 [Ne o (U)]
Furthermore, if v ¢ Np(Ux), then
[Np(X)| = [N (- (Ux)-

Consider the sets

Uy :=Ux \U"' and Us :=Ux NU".
Applying the argument of Lemma to ['(—v) we obtain

NPy (Ux)| 2 [Np« (UX)] + [Ne(Ux) N VE 2 (d = 1)|Ux|.

Thus [Ne (X)) > [Nooy ()] — 1> (d— D]X] — 1.
Observe that ’Np(,v)(Ux)‘ = (d—1)|Ux]| only if Np(,v)(Ux) - VL, ie. Np«(Ux) =
@. Ifv ¢ NF(U)() then

[Ne(X)| = [Np(—o)(Ux)| = (d = 1)[X].

Therefore |Np(X)| = (d — 1)|X| — 1 only if v € Np(Ux) and Np«(Ux) = 0.
O

The following definition will be useful in the proofs of the lemmas of the next
section.

Definition 4.3.3. Let " := (U, V, E) be a bipartite graph, and T'* = (U*, V*, E*)
be a subgraph in I' satisfying Hall’'s d-harem condition. Assume that M is a corre-
sponding perfect (1,d)-matching in I'*.

Let X be a subset of V and let x € X. We say that « is accessible from
y € Np(X) through X by matching M, (denoted by y MX, x) if there exist two
sequences of vertices {v,...,v,} C X and {ug,...,u,_;} C Np(X) such that

o (uj,v;) € M and (uj,vj,,) € E\ M, where i < n;

ir U
e (y,v)) € E.
In the technical lemma below we use the following notion of Kierstead, [Kie83|.
The subset X of U (resp. of V) is called connected if for all z,2’ € X there exist a

path = = pg,p1,...,px = 2’ in T such that p; € X U Np(X) for all 4 < k. Note here
that this definition concerns only bipartite graphs.
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Lemma 4.3.4. Let I' = (U,V, E) be a bipartite graph. Let I* = (U*,V*, E*) be a
subgraph of I' satisfying Hall’s d-harem condition and M be o corresponding perfect
(1, d)-matching.

Assume that

e v e Np(U")\V*;

e X is a minimal connected subset in V* U {0} with |[Np(X)| < 1| X|;

e ue Np(X)\U*,;
Then u ‘ﬂ» .

Proof. 1t is clear that v € X. Let X’ denote the subset of all elements of X that are
accessible from @ through X by the matching M. Assume that v € X’. Since u €
Nr(X), we then see that there exist uf), v(, such that @, uf, € Nr(v() and (ug, v)) € M.
Therefore X’ # (). We will show that |[Np(X \ X')| < 3[X \ X'|.

Let | X'| =1 and let Uy (X') ={u e U| (v € X')(u,v) € M}. Since elements of
X \ X’ are not accessible from @ through X by the matching M, then Np(X \ X’)N
Un(X") = 0.

Using this we see that

[Np(X\ X')| < [Np(X)| = [Un (X))

Since M is a (1, d)-matching, each element of Ups(X') can be matched with at most
d elements from X’. Therefore |Upr(X')| > [4] and

INe(X N\ X)] < INe(X)] — [0 (X)] < [Ne(X)] = 5] < 51X 1) = S[X\ X'].

So |[Nr(X \ X')| < 3|X\ X' and X \ X’ is smaller than X, a contradiction with the

: ~ ~ MX
choice of the latter. As a result ¥ € X'/, and consequently @ —— 7. O

4.4 Graphs constructed in parts 1 and 2 of each step
satisfy Hall’s d-harem condition

In this section the notation is taken from the construction of Section 3.

4.4.1 Part 1
Lemma 4.4.1. For any n one of the following statements holds:
o TW*(—u,,) satisfies Hall’s d-harem condition;

e there exist some vertex ujl € UM™L such that the graph TUV*(—u,, —i—uj) satis-
fies Hall’s d-harem condition.

Remark 4.4.2. If U™+ = @ then by Lemma m the graph I'("*(—u,) satisfies
Hall’s d-harem condition. In particular, this lemma proves Claim
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Proof. We know that the graph I'"™* satisfies Hall’s d-harem condition. Let v denote
the only vertex from the set {v . 7”2,d} that belongs to I'™*(—u,). The choice

of uy, 2’1, ceey n7d ensures that the graph F(")*(—un, —v) satisfies Hall’s d-harem
condition as well. Since U™*(—u,,) = U™*(—u,,, —v), for any X C U™*(—u,) we
have

n,1s -

[ Np e () (K] 2 N (a0 (X)) 2 dI X

The corresponding property also holds for all subsets of V("*(—u,) that do not
contain v. Therefore if I'("™*(—u,,) does not satisfy Hall’s d-harem condition, then a
witness of this is a finite X € V(*(—u,,) which contains v.

If such X is not connected, then the neighbourhood of X is a disjoint union of
the neighbourhoods of the connected subsets of X. Therefore there exists a minimal
connected set X such that v € X ¢ V®*(—u,) and [ Npms (g (X)] < 11X].
Choose X with these properties. We now want to prove that there is some ujL €
NF(n)(_un)(X). By the inequality of the previous line it suffices to show that

1
[Nre (—) (X)) 2 =X (4.1)
d

First, we consider the case when X = {v}. The vertex u, either belongs to
U(”)*(—un) or to UM™L. Since (™1 consists of (1,d — 1)-fans, in each case we have
| Np(n) (uy)| > d — 1. Moreover, the equality

|NF(n)(—un)(uU>’ =d-1 (4.2)

(—un)

implies that v,, & ™. Indeed, if v,, € I'™ then v,, € Ny (_y,) (Us) by reflect-
edness. On the other hand by the induction assumption, equality implies that
(ty, Uy, ) € DL Thus (u,,v) would be added to the matching M at the first part
of n + 1-st step of the construction, i.e. v ¢ I'™*(—u,), a contradiction.

Our next observation is

INEe) () ()] = [Npem) (Zq,) (wo)| — 1.

This follows by U™ -reflectedness of T("): Uy,, 1S the only possible element adjacent
to wuy that does not have the left copy in U™ (—u,). Additionally note that the
equality

[NE) (—) (0)] = [Npe (—yy (o) — 1 (4.3)

holds only if v,, € T (—u,).
Therefore equalities (4.2]), (4.3) are not consistent, i.e.:

INE) (<) (0)] > (d = 1) = 1 and [Npey_y,y(0)| =

IS

Since X is a singleton,
1
INpe) () (K] 2 21X

As we mentioned above this means that there is some uj € NF(n)( )(X)
Assume X # {o}. Then |Npem._,, (X)| = 1, and we have \X| > d by the

assumption | Npemyw(_y,)(X)] < 11X|. Consider this case. Let Ux := {u € U : v, €

X} in I (—u,). Applying the fact that V(™ is a subset of the copy of U™ we
arrive at two possibilities:
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(i) v, ¢ X and | X[ = [Ux];
(ii) vy, € X and | X| = |Ux| + 1.

We will show that in either case the inequality follows from Lemma m

Let & denote the fan from the matching 9} containing v,,, and &’ denote & with
vy,, removed. The conditions of Lemma are satisfied if we consider T (—u,,)
as I in that lemma, v, as v, and T+ (40) US as Tt Indeed, T (—u,,, —v,,,) is
U™ (—uy,, —v,, )-reflected. Moreover, the corresponding graph T'* from the lemma is
obtained by removal of T (4+0)U&' from T'™ (—u,,, —v,, ), therefore it is the same
as D("*(—u,, —v) with & removed. Since & is a fan from a perfect (1, d)-matching
in T("W*(—u,, —v), we know that T'* satisfies Hall’s d-harem condition.

Therefore in case (i) by Lemma we have

[Nr) () (X)] = (d = D] X[ = 1.

This fact combined with inequalities d > 2 and | X| > d implies
1
Nptor -y (X)) = 51X].

In case (ii) by Lemma we have:
[Npe () (X N\ A{vu, DI 2 (d=1D(|X] = 1) =1,
Le. |Npo(y, (X)) = (d=1)(1X[-1) - 1.
Let us show that the inequality is strict. Indeed, by Lemma the equality

[ Nee) (<) (X A\ A{ou, D = (d = D(IX] = 1) =1

implies that vy, € Npe(_y, ) (Ux\{vn,}) a0d Npoe (g, —o) (Ux\fvu,}) = (). There-
fore v,, € VML On the other hand, v,, € X c T™* a contradiction with the
choice of X.

Again, inequalities d > 2 and |X| > d imply

1

[Npe) (—y (X)) 2 (d = 1)(|X] = 1) = g‘X|
Therefore, the assumption |Npemy.(_,, 1 (X)] < 11X implies
Ny (Zy,) (X) N U™ (—uy) # 0,

i.e. there exists some ujL € Npm)(—y,) (X).

L €L
Uj717 . e ,/Uj7d_1.

Since M} is a perfect (1,d)-matching in the graph T'™*(—u,, —v), which in
turn is a subgraph of the bipartite graph I'™(—u,), we can use Lemma m

. my,, X L .
for v, X, uj and arrive at ujL — % p. This gives us a sequences of vertices

{vgs - v} {ug, - - . up,_ b as in Definition {4.3.3]
In order to prove that the graph I'()*(—u,, +u]L) satisfies Hall’s d-harem condi-
tion, we construct a perfect (1, d)-matching in it. We set

M/ = (m’}l, \ {(un’ vg,l)v M) (un’ Ug,d)? (u{)’ U[/)), ce (unglv v;fl)})u

There are d—1 vertices adjacent to u]L in T, We denote them by
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] /

L3
©N \ \ \
AN \ \ \
; N \ \ \
: N \ \ \
\ \ \ \
/

U i
Un, 0 u;j
v v 1/3
1 / 2L
U, Ug uj

Figure 4.8: We replace the red fans in the matching 9. by the blue fans to obtain
the matching M’ in T("W*(—u,, —I—uj-)

{(ujlﬂjj%l)a tt (ujLﬂij,d—l)v (u‘;" U[/))v (UE)?U/I)a co (U;L—lv U;’L)}’
where v, =v € {v) |,... ,v%d}.

We remind the reader that M} is a perfect (1,d)-matching in the graph T(»*,
We have obtained M’ by removing d edges adjacent to u,, adding d edges incident
to ujL, and the following replacement: for each of u] we replace one edge incident to
it by another incident edge (then v becomes adjacent to one edge in M’). It follows
that the matching M’ is a perfect (1,d)-matching in the graph F(")*(—un,—ku]*).
Therefore that graph satisfies Hall’s d-harem condition. O

4.4.2 Notation used in proof of Lemma [4.4.5

Before stating the second lemma, we remind the reader the notation used in it.
e In Case 3A

— =yt gt
— =yt yn)L
— T := (4,0, €), where € is induced in I" by the sets of vertices i, 0.
— L _pygnln U(n-i—l);
— vl — )L A yntl)
— L .= (U(”)l, V(”)l,E(”){-), where E(ML is defined according to the
set of fans of elements from UL putted into I+
e In Case 3B

~ =T\ (UL U {ut})
— Y= VEED\ (VLU (ot 1 <i<d - 1}).
— T := (U,Y, €), where € is induced in I" by the sets of vertices i, 0.

— UL = (U™Luf{at U with VW+ defined accordingly: V(ML .=
(VL Uik, 1<k <d—1})nyer;
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- L .= (U(”)l,V(”)L,E(”){-), where E(ML is defined according to the
set of fans of elements from UL putted into I+

e M2 is a perfect (1,d)-matching in the graph I'"*(—u,);

e /"1 1 <i<d(ord—1), are vertices adjacent to ub! in M2 (or in D(WL);

n, ’ ?

e ©1,%y are the elements among v/t 1 <4 < d (or d — 1), which are not added

to M+ there are at most two of them.

Before stating the lemma corresponding to the claims [4.2.2] and [.2.4] we state
two lemmas that will be useful in its proof.

Lemma 4.4.3. Depending on the existence of Uy either the graph T(—v1) or
T(—01, —02) satisfies Hall’s d-harem condition.

Proof. We only consider the case when vy exists, the other one is analogous.
It follows from the procedure that:

U(—b1, —09) = UM*(—up) \ {ubt, it

r e

and

B(—iy, —02) = VI (—up) \ {1, . s I O ey 3

Since M2 is a perfect (1,d)-matching in T'*(—u,) and T(—0y, —0) is obtained
from T'("*(—u,,) by removal of two fans from 92, we know that T(—0;, —0o) satisfies
Hall’s d-harem condition. O

Lemma 4.4.4. For any X C V" we have
1
[Npgern (X)] > 51X

Proof. The inequality follows from Lemma m Indeed, consider T'"t1) to be
' from that lemma. Note that the construction guarantees that (1) jg {(n+1)_
reflected. Depending on existence of 95 consider either I+ (+0;) or D)+ (407, 4+15)
to be I't from that lemma. Then the corresponding graph I'* from the lemma is
equal to either T(—v1) or T(—v1, —02) and by Lemma[d.4.3|it satisfies Hall’s d-harem
condition. Therefore conditions of Lemma are satisfied. O

4.4.3 Part 2
Lemma 4.4.5. For any n one of the following holds:

o T satisfies Hall’s d-harem condition;

e there exist some vertex uj- € U™ such that the graph S(—i—uj‘) satisfies Hall’s
d-harem condition.

e there exists vertices uf,ujL e UL such that the graph T(—l—u%, -l—ujL) satisfies

Hall’s d-harem condition.

Remark 4.4.6. If [U™L| < 1, then Lemma can be restated as follows. One of
the following holds:
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e T satisfies Hall’s d-harem condition;
o ("1 gatisfies Hall’s d-harem condition.
Therefore this lemma proves Claim

Proof of Lemma[{.4.5 Assume that T does not satisfy Hall’s d-harem condition. Let
ult! be the root of the last fan added to the matching M, in the second part of the
n-th step; it belongs to the produced cycle of length 2. Recall that o1, 72 denote
the vertices of the form vH'l that were not added to M!*'. In particular in Case
3A there is only one such a vertex and in Case 3B there is either one or two such
vertices. From now on we consider the case of two additional vertices: 1 and ¥s.
The case of only one of them, v1, is similar.

It is clear that the inequality |Nz(X)| > [Ng(_s,,—i,)(X)| holds for all X C 4.
This inequality also holds for subsets of ¥ which do not intersect {01, v2}. By Lemma
- 4.4.3| T(—11, —02) satisfies Hall’s d-harem condition, therefore if T does not satisfy
Hall’s d-harem condition then a witness of this is some finite subset of ¥ containing
at least one of 01, ¥s.

The rest of the proof is divided into two parts.

Part 1. We check whether the graph T(—v2) satisfies Hall’s d-harem condition.
If it does, we set

e M'is a perfect (1,d)-matching in T(—1s);
o N(ntDL .— ()L,

e I =% denoting IV = (U, V),

and finish Part 1 of the proof.

If it does not, then there exists a minimal connected set X such that v; € X C
U(—12) and |Ng(_s)(X)| < |X|. Observe that [Npmin(X)| > 4| X| by Lemma
444

The inequalities
1 1
[Npeon (X)] 2 S| X] and [Ng_g,) (X)] < 51X

imply
Npin (X) N U £,
i.e. there exists some uj- € Npm+n (X). Similarly as i.n Lemma we denote by
vj-:l, ... ’Uj,_d—l the remaining vertices of the fan from [+ containing uj-
Since M2 is a perfect (1, d)-matching in the graph T(—v7, —1s), Which in turn is
a subgraph of the blpartlte graph It we can use Lemmafor u , X, 01 and

m2
arrive at uj ;» v1. This gives us sequences {v(, ..., v}, },{uj,...,u,_1} as in
Definition We now apply an argument similar to one from the proof of Lemma

B4l We set

l -1 l - [
M ( \{( +1’ n+11) '7(un+lvvntl1)’(ué)avé))v---v(Ufn—la’U;’L—l)})U

{( j_ ) .,(ujl,vj:d_l),(uj‘,vé),(ug,v’l),...,(u;,l,v;)},
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where v], = 01. Observe that
(U fub}, (B U {ohy, ok D\ {2}) = SCH) \ {a} = S(Hub, —ia).

We remind the reader that 92 is a perfect (1, d)-matching in the graph I'*(—u,).
We have obtained M’ from 912 by removing d edges incident to ulf!, adding d
edges incident to ujL, and the following replacement: for each u we replace one
edge incident to it by another incident edge. It follows that the matching M’ is
a perfect (1,d)-matching in the graph E(—i—uj, —03). Therefore that graph satisfies
Hall’s d-harem condition.

We define IV := T(+ujl), denote I'" = (U’, V') and put
DOFDL = (@O (g}, VO {ofy 1 <k <d—1}).

This ends the first part of the proof.

Part 2. We check whether the graph I satisfies Hall’s d-harem condition. If it
does, then by Part 1 I has to be equal to T(—i—ujl) and the proof is finished by the
second option of the formulation. If it does not then repeating the reasoning of Part

1 we see that there exists a minimal connected set X such that 9 € X C V’/ and
|Np(X)| < 3| X|. Again, using Lemma we obtain

NF("+1) (X) N U(n)J_ 75 @,

i.e. there exists some ulL € Npmin(X). We denote by viﬁ, e ,vad_l the vertices
adjacent to u]L in (DL
The matching M’ obtained in the first part of the proof is a perfect (1,d)-

matching for either the graph T(—vs), or the graph T(+ut, —i3). Each of them

is a subgraph of (1) Therefore we can use Lemma [4.3.4] for uf, X, vy. We have

1

M X . . .
u; — V2. Again we can apply the argument of Lemma 4.4.1 to obtain an

appropriate matching:

M" = (M/ \ {(UG,U(I)), R (u;z—bviz—l)})U

{(uiL>UiL,1)v t (uilvvi%d—l)’ (uiva(,)% (ué)vvll)v te (u;’L—l’U;’L)}'

We have obtained M” from M’ by adding d edges incident to u;-, and replacing one
edge in matching for each of u}, in such a way, that 0; is adjacent to one edge in M".

The final argument depends on two possible outputs of Part 1. If the graph

T (—12) does not satisfy Hall’s d-harem condition (i.e. ujL is involved), then M" is a

perfect (1,d)-matching in the graph T(+u;, +ujl) If it does, we redefine uj- = ui
and then M” becomes a perfect (1,d)-matching in the graph ‘I(—l—uj-) Therefore if

% does not satisfy Hall’s d-harem condition, then either f(—i—uj-) or T(+u;, —i—uj-)
satisfies this condition. O

4.5 Proof of the Main Theorem

Proof of Theorem[{.1.3. Let us apply the construction of Section [f.2] This construc-
tion works modulo Claims {.2.1] [4.2.2] {.2.3| £.2.4] Claims[.2.T]and {.2.3]follow from
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Lemma[4.4.1] Claims and follow from Lemma [4.4.5] Since for every n the
n
union |J M; consist of (1, d—1)-fans, the final set of edges M is an (1, d—1)-matching.
i=1

For every u € U there is a step where an edge incident to u is added to M. Then
if the copy v, was not added to M earlier, in the second part of this step this copy
is added to M. It follows that M is a perfect (1,d — 1)-matching of the graph I'.

It remains to verify that M realizes a function, say f, with controlled sizes of its
cycles. Since the edges (uo,v&l) and (vuO,uvgl) are added to M at step 1 we see
f?(ug) = f(uvgyl) = ug. Since ug = 1, condition (i) of Definition is satisfied.

Till the end of the proof a natural number n will be used both for vertices and
numbers of steps. Note that as a vertex it appears in M at the n-th step at latest.
This follows from minimality of u, in U™~ Y. The length of a cycle created at the
n-th step cannot be greater than max{2,n} so if n is in a cycle then fi(n) = n for
some ¢ < n and condition (i7) of Definition is satisfied.

It remains to show that condition (i7i) is satisfied. Let f; be the partial function

n
(living in N) realized by M; and f,, be the partial function realized by |J M;. Let
i=0
E, =A{(fn(m),m) : m € Dom(f,)} be the graph of f,, on Dom(f,) URng(f,). Then
M, = {(fn.(m), m) : m € Dom(f,)} is the graph of f,, and is a subgraph of F,, too.

Observe that F, has at most n + 1 connected components. Indeed, each sub-
graph M; has exactly one connected component. Furthermore, one of the following
properties holds:

e M, is a connected component of F};;

e M, is a fan with a root which already appears in Fj,_1 as a vertex of degree 1
(see the way how fans of U-elements are added to M).

The construction guarantees that F), consists only of vertices of degree 1 and d.
When a vertex has degree 1 its Fj,-neighbourhood is only its f,-image. When a
vertex has degree d its f,-image and d — 1 preimages are in F,. In particular each
connected component of F), contains a cycle. The length of the cycle is not greater
than max{n, 2}.

Since the value f,,—1(n) is defined, n belongs to some connected component of
fn_1. Thus there exist k and I such that f**!(n) = f¥ | (n). These k and I work for
the equality f**!(n) = f¥(n). It remains to show that k can be bounded by 2n and
[ by n.

The latter estimate is easy: the biggest cycle that can be constructed before the
n-th step does not have more than max{n — 1,2} elements. Below we will use the
bound n for [ for simplicity.

In order to show that k is bounded by 2n let us estimate the size of a subset of U
without a cycle that can be added to the matching M in the process of the n-th step
of the construction. It must consist of elements of U™ ~11 added to the matching
at the iteration of part 2 of the n-th step together with w,. Therefore we can bound
it by the maximal possible number of elements in U™~V increased by 1.

Let us denote the number of elements from UL added to M at the s-th step by
ls. Clearly, f%*1(n) € M; for some s <nand j < n—1. If no cycle is constructed in
the j-th step then f&+1(ft+1(n)) € M; for some i < j — 1. Tterating this argument
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we arrive at .
B<) (6+1).
s=1

n

Since at the n-th step the size of (J UL does not exceed n — 1,
s=1

n

Zfsgn—l.

s=1

We see that £ < 2n — 1. Thus condition (7i¢) of Definition is satisfied. O

4.6 Computable entourages of coarse spaces

To simplify the matter, in the case of bipartite graphs, from now on we will always
identify U and V with computable subsets of N. Further, admitting that U NV # ()
we distinguish these sets saying that U is taken from the left copy of N but V is
taken from the right one. In particular we often consider graphs where U =V = N.

The following proposition explains our original motivation which led us to the
final results of [Dud21a].

Proposition 4.6.1. Let (N, &) be a coarse space of bounded geometry and let E € €
be a symmetric entourage. Let f be a computable function realizing a perfect (1,d—1)-
matching for d > 3 in the graph I’ = (NN, R), where R = F \ Ay C N x N.

If f has controlled sizes of its cycles, then there exists a computable E' € £ such
that T(E') is a d-regular forest. Moreover there exist an algorithm which for any
m,n € N recognizes if m and n are in the same connected component of T'(E').

Proof. We adapt the proof of Theorem 2.2 of [Sch18].

Since f is a total, computable, surjective, (d — 1) to 1 function, the graph of f
(denoted by T'(f)) is computable and d-regular. We remind the reader that f satisfies
the following properties:

») f21) =1
(ii) if n > 2 and f%(n) = n then i < n;

(iii) if n > 2 and for all i < n we have fi(n) # n then there exist k < 2n and [ < n
such that f**(n) = f*(n);
(iv) for each n the pair (n, f(n)) belongs to R.

Since R = E'\ Ax the last property implies that f does not have fixed points. Let
P(f) ={n e N[Im = 1(f"(n) = n)} and Fy(f) ={n € P(f)[Vm = 1(f"(n) = n)},

i.e. the union of all cycles and the set of minimal representatives of cycles. By
property (ii) there is an algorithm which for every n € N verifies whether n € P(f),
i.e. P(f) is computable. Observe that Py(f) is computable too. Indeed, 1 obviously
belongs to Po(f). When n > 2 and n € P(f), then verifying if f'(n) > n for all
i < n we can check whether n € Py(f) (apply (ii) again).
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Since each component does not have two disjoint cycles we see that whenever
n,m € Py(f) and n # m, then n and m do not belong to the same connected
component of the graph I'(f). Thus

P =,y py ")l € 1),

There is an algorithm which for every n € N finds the Py(f)-representative of the
connected component of n. Indeed, if for example n ¢ P(f) then applying (iii) we
can find i < 2n such that fi(n) € P(f) and later j < n such that fi77(n) € Py(f).

Based on this we want to construct a new computable function f, such that its
graph (denoted by I'(f,)) is a computable d-regular forest. Let us start with two
auxiliary functions g, h : Py(f) x N — N such that, for all n € Py(f) and m > 1 the
following properties hold:

e g(n,0) =n and h(n,0) = f(n);
® {g(n, m)vh(na m)} ﬁP(f) = Q);
e f(g(n,m)) =g(n,m—1), and f(h(n,m)) = h(n,m —1).

We want g,h to be computable functions. Since Py(f) and P(f) are computable

and the graph T'(f) is computable and d-regular the following rule gives required

algorithm. Given n € Py(f) and m > 1 and having defined g(n,m — 1) find the

minimal x such that ¢ P(f) and f(z) = g(n,m — 1). Then let g(n,m) = x. The

definition of h(n,m) is similar. Clearly g and h are injective and have disjoint ranges.
Now we define f, : N — N for z € N in the following way:

g(y,m+2) ifx=g(y,m) for y € Py(f) and even m > 0,

fulz) = gly,m—2) if x =g(y,m) for y € Po(f) and odd m > 3,
#E) = f?(x) if x = h(y,m) for y € Py(f) and m > 2,
f(x) otherwise.

We remind the reader that for each n there is i < 3n such that fi(n) € Py(f).
Thus for any m’ > 3n the number n does not belong to {g(y,m’), h(y,m')}. This
guarantees that f, is computable. In the proof of Theorem 2.2 in [Sch18] it is proved
that I'(fi) € &, the function f, does not have cycles and for each z € N the size
|f1(z)| is d — 1. Therefore the graph I'(f,) is a computable d-regular forest.

To see the last statement of the proposition note that if C C N is a connected
components of I'(f) then it is also the set of vertices of a connected component of
I'(f+). Since for each n one can compute n’ € Py(f) such that n and n’ are in same
connected component of I'(f) we have an algorithm which for any n and m verifies
whether n and m are in the same tree in I'(fy). O

We now formulate a final theorem of [Dud21aj.

Theorem 4.6.2. Let d > 3. Let a coarse space (N,E) of a bounded geometry be
non-amenable. Furthermore, assume that there exists a highly computable symmetric
E € & such that for any finite F C N we have |E[F]| > (d+2)|F|. Then there exists
a computable E' € £ such that T'(E’) is a d-regular forest. Moreover, there exist an
algorithm which for any m,n € N recognizes if m and n are in the same connected
component of T'(E').
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To see that this statement is a computable version of Schneider’s result we re-
mind the reader that when (X, ) is not amenable, then for every finite d there is a
symmetric entourage such that |E(F)| > d|F| for every finite F' C X (see discussion
before Proposition 2.1 in [Sch18]).

This theorem is proved in [Dud21a]. Here we only explain some difficulties arising
in this task. In order to apply Proposition to Theorem [{.6.2] one may use
Theorem[.1.3] It gives a matching which satisfies almost all properties of Proposition
The only property which is lost is computability. To remedy this one can
imagine that the computable version of Hall’s Harem theorem from [DI22a] should
work.

Indeed, this theorem can be applied under circumstances resembling the situation
of Theorem [£.6.2] Let FE be a highly computable symmetric entourage as in Theorem
and consider the graph I'(R) defined for the symmetric relation R := F\ Ay C
N x N. Since the coarse space (N, £) is of bounded geometry, the neighbourhood of
each vertex is finite. By high computability of F it follows that there is an algorithm
which computes the sizes of neighbourhoods of vertexes. Clearly I'(R) is a highly
computable graph.

It remains to show that I'(R) satisfies c.e.H.h.c.(d). The following inequality
holds for R:

|RIF]| = [E[F]\ F| = |E[F]| - [F| = (d + 1)|F].

Thus, for all finite sets X C N, the following holds
[Nr(ry (X)| — dIX[ = (d + DX = d|X] = [X].

Hence n < | X[ implies that n < |N(X)| —d|X| < [N(X)| — 3| X|. Since the identity
map on N is a total computable function, it follows that I'(R) satisfies c.e.H.h.c.(d).
As a result applying [DI22a, Theorem 2.9] we get a computable function f realizing
a perfect (1,d — 1) matching in the graph T'(R).

We now meet another obstacle: applying |[DI22a] we cannot guarantee that this
computable f satisfies any condition (e.g. having controlled sizes of its cycles) that
will allow us to recognize periodic points in a computable way. The latter task
is necessary for computability of fi(x) in the natural adaptation of the proof of
Theorem 2.2 of [Sch18| (see Theorem[4.6.1)). This explains why we need a computable
version of the Main Theorem.
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Chapter 5

Preliminaries for Part 11

The main results of this part are available at arXiv as a preprint ‘Torsion subgroups
of small cancellation groups’ [Dud21b|. In comparison to the preprint, this part is
extended by some preliminary material.

In Sectionp.I] we give a brief introduction to the small cancellation theory. In Sec-
tion[5.2] we define the quadrization of a complex and show properties of quadrizations
of C'(4)-T'(4) complexes. In Section[5.3| we define the Wise complex and demonstrate
some of its properties in the case of C'(6) complexes.

5.1 Small Cancellation Theory

In 1911 Dehn [Deh11] provided algorithms which solve word and conjugacy problems
for the fundamental groups of closed orientable two-dimensional manifolds. A crucial
feature of these groups is that they are defined by a single relator r, with the property
that there is a little cancellation in the product of r and its cyclic conjugates.

Dehn’s algorithms have been extended to a large class of groups with similar
‘Small Cancellation’ properties of its defining relations.

The theory was sporadically developed before being fully treated in the book by
Lyndon and Schupp [LSO01], which is a standard reference on the subject.

The small cancellation theory is a classical powerful tool for constructing ex-
amples of groups with interesting features, as well as for exploring properties of
well-known groups. It might be seen as a bridge between the combinatorial and the
geometric group theories, and as one of the first appearances of nonpositive curvature
techniques in studying groups. Constituting a classical part of mathematics, small
cancellation techniques are still being developed, having numbers of variations, and
have also been used in proving new important results nowadays.

Traditionally, small cancellation theory is defined using group presentations. We
follow the generalization of [MWO02|, with small cancellation conditions defined for
combinatorial 2-complexes. This approach agrees with the definition of small can-
cellation conditions for group presentations, when we consider the Cayley complex
of a group presentation.

We recall some fundamental notions of algebraic topology following Hatcher’s
textbook |[Hat00].

A homotopy is a family of maps f; : X — Y.t € [0,1] such that the associated
map F : X x [0,1] = Y where F(z,t) = fi(z) is continuous. One says that two

93
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maps fo, f1 : X — Y are homotopic if there exist a homotopy f; connecting them.
A map is nullhomotopic if it is homotopic to a constant map.

Definition 5.1.1. A CW complez is a space X constructed in the following way:

1. Start with a discrete set X© called 0-skeleton. Elements of X© are called 0-cells.

2. Inductively, form the n-skeleton X™ from X"~ ! by attaching n-cells e? (where
each e is a copy of D") via maps ¢ : S* ! — X"l As a set X" =
Xn—ll_l el

a ot

This process can either stop at some finite stage setting X = X" or can continue
indifnitely setting X = [J,, X™. In this thesis we only consider the first case.

Note that a graph is a 1-dimensional CW-complex with O-cells called wvertices
and 1-cells called edges. Distances between vertices in a connected graph are always
measured by the standard graph metric which is defined for a pair of vertices v and
v as the number of edges in the shortest path connecting v and v.

A graph T' is simplicial if there is no edge in I" with both endpoints attached
to one vertex and no two edges of I' having their endpoints attached to the same
unordered pair of vertices.

Let X and Y be CW-complexes. A map from X to Y is combinatorial if it is
a continuous map whose restriction to every open cell e of X is a homeomorphism
from e to an open cell of Y. A complex is combinatorial if the attaching map of each
of its n-cells is combinatorial for a suitable subdivision of the sphere S?~1.

A polygon is a 2-disc with a cell structure that consists of n 0-cells, n 1-cells and
a single 2-cell. For any 2-cell C' of a 2-complex X there exists a map R — X where
R is a polygon and the attaching map for C factors as S! — OR — X. Because of
that, by a cell, we will mean a map R — X where R is a polygon.

A path in X is a combinatorial map P — X where P is either a subdivision
of the interval or a single O-cell. For given paths P, — X and P, — X such that
the terminal point of P; is equal to the initial point of P, their concatenation is
the natural path PiP, — X. Similarly, a cycle is a map C — X where C is a
subdivision of a circle S'. We will often identify paths and cycles with their images
in the complex X.

Two paths in X are homotopic if they are joined by homotopy and have the same
endpoints. A homotopy class of a path f is the equivalence class of a path f under
the equivalence relation of homotopy.

A space X is simply connected if there is a unique homotopy class of paths
connecting any two points in X.

From now on we only consider 2-dimensional CW-complexes and we will refer to
them as “2-complexes”.

The following definition is crucial in the small cancellation theory.

Definition 5.1.2. Let X be a combinatorial 2-complex. A non-trivial path P — X is
a piece of X if there are 2-cells R; and Ry such that P — X factorsas P — R} —» X
and as P — Ry — X but there does not exist a homeomorphism dRy — Ry such
that there is a commutative diagram:
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P —— 0Ry

|7

8R1*>X

Intuitively, a piece of X is a path which is contained in boundaries of 2-cells of
X in at least two distinct ways.

A disc diagram D is a compact contractible subspace of a 2-sphere S? with the
structure of a combinatorial 2-complex. The area of diagram D is the number of
its 2-cells. If D is a disc diagram, then the diagram D in X is D along with a
combinatorial map from D to X denoted by D — X.

Definition 5.1.3. Let X be a 2-complex. A disc diagram D — X is reduced if for
every piece P — D the composition P — D — X is a piece in X.

Let us regard S? as R?U {oo} and assume that D is a disc diagram that does not
contain the point co. The boundary cycle 0D of D is the attaching map of the 2-cell
that contains the point oo.

The following theorem is known as the Lyndon-van Kampen lemma [MWO02,
Lemma 2.17].

Theorem 5.1.4. If X is a 2-complex and P — X is a nullhomotopic closed path,
then there exists a reduced disc diagram D — X such that P — D is the boundary
cycle of D, and P — X 1is the composition P - D — X.

We will now define small cancellation conditions C(p) and T'(q).

Definition 5.1.5. Let p be a natural number. We say that a 2-complex X satis-
fies the C'(p) small cancellation condition provided that for each 2-cell R — X its
attaching map R — X is not a concatenation of fewer than p pieces in X.

In the following definition of T'(¢q) condition we will use the notion of valence of
a 0-cell v € X in the complex X, i.e. the number of ends of 1-cells incident to it. We
denote it by dx(v) and drop the subscript if it is clear from the context.

Definition 5.1.6. Let g be a natural number. We say that a 2-complex X satisfies
the T'(q) small cancellation condition if there does not exist a reduced map D — X
where D is a disc diagram containing an internal O-cell v such that 2 < §(v) < q.

If a complex satisfies both C(p) and T'(¢) conditions, then we call it a C(p)-
T(q) complex. It is known that C'(3)-7(6), C(4)-T(4) and C(6) complexes are
nonpositively curved.

The following proposition is a known property of simply connected C(6) com-
plexes |[OP18].

Lemma 5.1.7. Let 21,%2,...,ZT, be a pairwise intersecting 2-cells of a C(6) complex
X. ThenT1NZoN...N T, is either a piece or a verter.

The following propositions are known properties of simply connected C(4)-7'(4)
complexes [Hod20, Proposition 3.5, 3.8].



56 CHAPTER 5. PRELIMINARIES FOR PART 11

Proposition 5.1.8. Let Fy and F» be a pair of intersecting 2-cells of a simply con-
nected C(4)-T(4) complex. Then the intersection Fy N Fy is connected.

Proposition 5.1.9 (Strong Helly Property). Let Fy, Fs and F3 be pairwise intersect-
ing 2-cells of a simply connected C(4)-T(4) complex. Then the intersection of some
pair of these 2-cells is contained in the remaining 2-cell, i.e. for some permutation o
of the indices, we have

Fg(l) N Fo—(2) C Fo(3).

In the case of C'(3)-T'(6) complexes, we will use the fact that all pieces are short,
which was first observed by Pride [Pri88| in the following Lemma.

Lemma 5.1.10. If X is a T(q) complex for ¢ > 5, then every piece in X has length
1.

5.2 Quadric complexes and quadrization of a complex

In this section we define the quadrization of a complex and state some results concern-
ing quadrizations of C(4)-T'(4) complexes. We begin with some necessary notions
concerning CAT(0) square complexes.

An important for us type of complexes are square complexes. Square complexes
are 2-complexes whose 2-cells are 4-gons. In this case, instead of the usual terms,
0-cell, 1-cell and 2-cell, we will use vertex, edge and square, respectively.

Let X be a square complex and L be a subcomplex of X with vertices {u1, ..., un,
v1,. .., U}, and the set of edges consisting of the edges of the form (u;, ui11), (vi, vVit1)
and (v;,u;). We call such a complex L a ladder of length n and denote it by
{ut, ..., uplvr, ..., o0}

U1 U2 us (2 Us Ug Uy

U1 V2 (%] V4 Us Ve U7

Figure 5.1: Ladder of length 7.

A CAT(0) square complez is a square complex for which the metric obtained
by making each square isometric to the regular Euclidean square of side length 1
satisfies the CAT(0) condition, which is a metric nonpositive curvature condition
concerning thinness of geodesic triangles. We use a combinatorial characterization
of the CAT(0) condition for the square complexes which follows from Gromov’s link
condition, and take it as the definition. In the following definition, a link of a 0-cell
v of a 2-complex X (denoted X,) is the graph whose vertices correspond to the ends
of 1-cells of X incident to v, and an edge joins vertices corresponding to the ends of
1-cells eq, eg iff there is a 2-cell F' such that e1,eq € OF.

Definition 5.2.1. A square complex X is CAT(0) if it is simply connected and for
any O-cell v € X the shortest embedded cycle in the link of v has length at least 4.
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If X is a disc diagram, the CAT(0) condition means that each internal vertex is
incident to at least four squares.

Let X be a 2-complex with embedded 2-cells. Let Xy, Xo be the sets of 0-cells
and 2-cells of X. Let I'x be a bipartite graph on the vertex set Xy U Xs where
an edge joins v € Xg with F' € Xy whenever v € 0F. The following notion was
introduced by N.Hoda.

Definition 5.2.2. [Hod20, Section 3.2] The quadrization Y of a complex X is the
4-flag completion Y = I'x i.e. a complex obtained from I'y by spanning a 2-cell on
each of its nontrivial 4-cycles.

If we additionally assume that every 1-cell of X is contained in the boundary of a
2-cell then simply connectedness of X implies simply connectedness of its quadriza-
tion [Hod20, Lemma 3.9].

All 2-cells are squares, therefore the quadrization of a complex is a square com-
plex. We will sometimes consider cells in both the complex X and its quadrization
Y at the same time. In such cases we will denote by T the 0- or 2-cell corresponding
to the vertex x from Y.

A path P — Y will be denoted by (x1,...,z,), where x; are the vertices in Y
that are the images of vertices of P, in particular, x1, x, are the images of ends. If
a path is a piece, then we will denote it by (x,2’) where x and 2’ are its endpoints.
A cycle C — Y will be denoted by (z1,...,zy).

Fach square F in Y has four vertices: two from Xy and two from X5. Boundary of
F is a cycle OF = (x1, xo, x3,24). We will use notation F = [x1, x2, 3, x4]. Observe
that either x1,2x3 € Xg and x2,24 € Xo, or 1,23 € X5 and xo, 24 € Xp; wherever
possible we will use the first of these options. Let F' = [z1,x2, 3, 24] be a square in
Y. Since X is C(4)-T'(4), the intersection of 2,74 is connected and contains 71, T3.
Therefore (Z1,Z3) is a piece in X. On the other hand, if (Z,7%) is a piece in X
contained in T, N 7Y, then F' = [2), x5, 2%, 2] is a square in Y.

In [Hod20] N.Hoda proved that the 1-skeleton of the quadrization of a simply
connected C'(4)-T'(4) complex is a hereditary modular graph. In his paper Hoda
called such complexes quadric. We only need a part of his result. Hoda defines
quadric complexes as simply connected square complexes satisfying, among others,
the following conditions, called rules of replacement.

Proposition 5.2.3. [Hod20, Definition 1.1.] Let Y be the quadrization of the C(4)—
T(4) complez X.

(A) If there are two squares Fy, Fy € Y such that O(Fy U Fy) is a cycle of length 4,
then there is F € Y such that OF = 0(F; U Fy).

(B) If there are three squares Fy,Fy, F3 € Y such that O(F1 U Fy U F3) is a cycle
of length 6, then there exist F, F' € Y such that O(Fy U Fy U F3) = 9(F U F’),
i.e. this cycle has a diagonal that divides it into two 4-cycles.

Proposition 5.2.4. Let Y be the quadrization of a C(4)-T(4) compler X and «
be some cycle in Y. If D is a minimal area disc diagram for o in 'Y, then D is a
CAT(0) square complex.



o8 CHAPTER 5. PRELIMINARIES FOR PART 11

(B)

Figure 5.2: Replacement rules for quadric complexes

Proof. Suppose that there is an internal vertex v in D incident to k < 4 squares.
Since v is internal, k is either 2 or 3. Let D’ be the union of squares incident to wv.

Suppose k = 2. Let Fy = [v,x1, %2, x3], [y = [v, 2], x4, x%]. Since v is an internal
vertex, without loss of generality x; = 2,23 = x%. The vertex za cannot be the
same vertex as x4, as then both F; and Fy would be spanned by the same 4-cycle
what contradicts the definition of quadrization. Therefore (zq, 21, 25, x3) = dD'. By
the first rule of replacement, it spans a square that contradicts the minimality of the
area of D.

Suppose that £k = 3. Without loss of generality we may assume that every internal
vertex of D is incident to at least three squares. Then D’ consists of 3 squares
bounded by a 6-cycle. By the second rule of replacement there exists diagram D"
such that 9D” = 0D’ and D" consists of two squares, a contradiction to minimality
of the area of D. O

Let Y be the quadrization of a C'(4)-T'(4) complex. Let L be the subcomplex of
Y with the set of vertices

{ut, ... Un,v1,. .., Up, W1, ..., Wy, Chy

the set of edges consisting of the edges of the form (u;, uit1), (vi,vig1), (Wi, wit1),
(wi,v;), (vi,u;) and (c,wy),(c,u,) and the set of squares consisting of squares
[Wiy Wit1, Vi, Vig1], (Vi Vig1, Wi, wit1] and [¢, Uy, vy, wy]. We call such a complex a dou-
ble ladder of length n with a cap and denote it by {uq, ..., up|v1, ..., va|ws, ..., wylc}.
The square [c, up, vn, wy] is called a cap (see Fig. [5.3).

Proposition 5.2.5. If {uy,...,up|v1, ..., vp|wi, ..., wy|c} is a double ladder with a
cap, then at least one of the following conditions holds:

1) (e,vp-1) €Y

2) for some i € {3,...,n} (u;,vi—2) €Y;
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Uy U3 U2 Uy

Figure 5.3: Double ladder {u1, ..., u4|v1,...,v4|wy, ..., wa|c} of length 4 with a cap.

3) for some i € {3,...,n} (w;,v;_2) €Y;
4) (u27w1) eyY;
5) (ul,wg) eY.

Proof. Assume that none of these holds. By definition of a double ladder with a
cap, (¢, Wn, Wp—1,Un—1,Un—1,Up) 18 a 6-cycle in Y, that bounds three squares. By
the second rule of replacement there exists a diagonal splitting into two 4-cycles.
Therefore one of (¢, vn—1), (Un, Wn—1), (Un—1,wy) belongs to Y; see Fig.

w'n w'n —1 wn72 .. w2 wl
G- 'Ufn 1Un_1 ’Un72' .. U2 U1
'u’l’l Up—1 un_2. .o Uz Uy

Figure 5.4: The 6-cycle (¢, wp,wp—1,Vp—1,Un—_1,Uuy) bounds three squares in red.
One of blue edges belongs to Y.

Since 1) does not hold, we obtain a shorter double ladder with the cap being

[wna Up—1,Un-1, wn—l] or [u’VM Unp—1,Un-1, wn—l]-

Wy, Wp—1 Wn-2 Wa wh

- - B

\

C Un\,\ Upe1 Un—2 U2 U1

\
\
NS .

Uy MUy g Un-—2 U2 Uq

Figure 5.5: One of the possible options for the second 6-cycle that bounds three
squares in red. One of the blue edges belongs to Y.

Since there is no ¢ such that 2) or 3) holds, by induction we obtain that (ug2,w;) €
Y or (u1,ws) € Y, a contradiction. O
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5.3 Systolic complexes and Wise complex

In this section we define systolic complexes and state some results concerning the
Wise complex of a C(6) complex.

We begin by introducing an important notion of simplicial complexes. These
complexes are n-dimensional complexes whose n-cells are n-simplices. As already
mentioned, we only consider 2-complexes. In the case of simplicial complexes, instead
of the usual terms, O-cell, 1-cell and 2-cell, we will use vertex, edge and triangle,
respectively.

Let X be a simplicial complex and L be a subcomplex of X with vertices
{u1, ..., Un,v1,...,0n41}, and the set of edges consisting of the edges of the form
(uiy wiv1), (Vi vit1), (ui,v;) and (us,vip1). We call such a complex L a ladder of
length n and denote it by {u1,...,up|v1, ..., Vny1}.

(5] U9 us Uy Us Ug

U1 (%) Vs V4 Us Ve (rd

Figure 5.6: Ladder of length 6.

A CAT(0) simplicial complex is a simplicial complex for which the metric ob-
tained by making each triangle isometric to the equilateral Fuclidean triangle sat-
isfies the CAT(0) condition. As in the square complex case we use a combinatorial
characterization, following from Gromov’s link condition, as the definition.

Definition 5.3.1. A simplicial complex X is CAT(0) if it is simply connected and
for any 0-cell v € X the shortest embedded cycle in the link of v has length at least
6.

If X is a disc diagram, the CAT(0) condition means that each internal vertex is
incident to at least six triangles.

Let X be a 2-complex with embedded 2-cells, such that every 1-cell is contained
in the boundary of a 2-cell.

Let U be a cover of X. The nerve of the cover U is a simplicial complex whose

vertex set is U, and vertices Uy, . . ., U, span an n-simplex if and only if (| U; # 0.
0<i<n

Definition 5.3.2. The Wise complez Y of a complex X is the nerve of the covering
of X by closed 2-cells.

By definition Wise complex is a simplicial complex. Similarly as in the case of
quadrization, we will sometimes consider some cells in both the complex X and its
Wise complex Y at the same time. In such cases by Z we will denote the 2-cell
corresponding to the vertex = from Y.

It is known that the Wise complex of a simply connected C(6) complex is systolic
[Wis03, Theorem 10.6], see also |[OP18].



5.3. SYSTOLIC COMPLEXES AND WISE COMPLEX 61

Definition 5.3.3. Let X be a simplicial complex. X is k-large if X is flag and every
cycle in X of length less than k has a diagonal, i.e. in X there is an edge connecting
nonconsecutive vertices of the cycle.

Lemma 5.3.4. [JS06, Lemma 1.3] Suppose that X is k-large and S®, denotes the
triangulation of S* with m 1-cells. If m < k then any simplicial map f : S} — X
estends to a simplicial map from disc D?, triangulated so that the triangulation on
the boundary is S, and so that there are no interior vertices in D?.

Definition 5.3.5. A simplicial complex X is systolic if X is simply connected, and
links of all vertices of X are 6-large.

Proposition below follows from [Che00, Claim 1, Theorem 8.1], we note here that
bridged complexes in that paper are exactly systolic complexes.

Proposition 5.3.6. Let o be a cycle in a systolic complex X. If D is a minimal
area disc diagram for o in X, then D is a CAT(0) simplicial complez.

Let L be the flag subcomplex of Y spanned by the set of vertices

{u, .. Un, V1, .., Upy W,y .. Wy}

and the set of edges:

{(uis uit1), (Vi vig1), (Wi wit1), (Wiy Vi), (Vig1,ui) 1 <d <n—1}U
{(wi,vy), (vi,u;) : 1 <i<n}U{(un,wy)}.

We call such a complex a double ladder of length n with a cap and denote it by
{ug, ..., uplvr, ..o, op|wi, ..o wy b

The triangle [uy,, v, wy] is called a cap, see Fig.

W4y Ws Wo (0}

(2 V3 V2 U1

Uy U3 U Uy

Figure 5.7: Double ladder {uy,...,uq4|v1, ..., v4lwy, ..., wye} of length 4 with a cap.

Proposition 5.3.7. If {uy,...,up|v1,..., 0wy, ..., w,} is a double ladder with a
cap, then at least one of the following conditions holds:

1) for some i€ {3,...n} (u;,vi—1) €Y}
2) for some i€ {3,...n} (w;,v;i—1) €Y;

3) (uy,wr) €Y.
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Proof. Assume that none of these holds. By definition of a double ladder
with a cap, (Wp,Wp—1,Vn—1,Un—1,u,) is a b-cycle in Y. By systolicity, one of
(Wn, Vp—1), (Un, Vn—1), (Un—1, Wn—1) belongs to Y.

W, Wp—1 Wa w1
~ N |
N
Uy, 1\ Un—1 U1
- ( |
.7\
Unp, Up—1 ' U2 Uy

Figure 5.8: The 5-cycle (wp,wp—1,Vn—1,Un—1,Uy) in red. One noncrossing pair of
blue edges belongs to Y.

Since neither 1) nor 2) holds, we obtain a shorter double ladder with the cap
[Un—1,Vn—1,wp—1]. Since there is no i such that 1) or 2) holds, by induction we
obtain that (u1,w;) € Y. Contradiction. O



Chapter 6

Torsion subgroups of small
cancellation groups

Most of that chapter concerns Theorem stating that the Meta-Conjecture from
the introduction is true for small cancellation complexes, if we additionally assume
that the action is free on the 1-skeleton. In Sections - we prove technical
results, necessary for the proof of Theorem [[T.2] Moreover, in Section we prove
existence of CAT(0) structure for C'(3)-T(6) complexes and conclude that the Tits
Alternative holds for groups acting almost freely on C(3)-7'(6) complexes. The re-
maining sections finish the proof of Theorem and apply it to prove automatic
continuity and that torsion subgroups of groups defined by small cancellation pre-
sentations are finite.

6.1 Description of the results
The main result is the following theorem.

Theorem II.1. Torsion subgroups of groups defined by C(6), C(4)-T(4), and C(3)-
T(6) small cancellation presentations are finite cyclic groups.

The theorem establishes a particular case of Meta-Conjecture from the intro-
duction. It may be seen as a small cancellation counterpart of a (still) conjectural
feature of CAT(0) groups (see [Swe99|). Note however that in our result we allow
the presentations to be infinite. Theorem is an immediate consequence of the
following result.

Theorem I1.2. Let X be a simply connected C(6), C(4)-T(4), or C(3)-T(6) small
cancellation complex. Let G be a group acting on X by automorphisms such that
the action induces a free action on the 1-skeleton X' of X. If the action is locally
elliptic, then G is a finite cyclic group. In particular, G fizes a 2-cell of X.

Although we believe that some versions of Theorem [[T.2lhold without the assump-
tions on the freeness of the action, in the current statement these cannot be omitted.
For example, it has been shown by Serre [Ser(3, Theorem 15, Chapter 1.6.1] that
any countable infinitely generated group acts without fixed points on a tree, which
is a 1-dimensional small cancellation complex (the conjectures in [HO21] concern

63
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mostly finitely generated groups). Furthermore, our assumptions are tailored for the
application to Theorem [T.T}

In general, there is no known way of equipping a small cancellation complex with
a ‘“reasonable” CAT(0) structure (and some experts doubt it can be done at all).
Nevertheless, we observe that C'(3)-T'(6) complexes admit such a structure. This is
a relatively simple observation following a remark by Pride |[Pri88| p.165]. Although
the next result implies a number of significant features of C'(3)-T'(6) groups, it seems
it has not been observed before.

Theorem I1.3. Let X be a simply connected C(3)-T(6) small cancellation complez.
Then there exists a metric on X turning it into a CAT(0) triangle complex X such
that every automorphism of X induces an automorphism of X.

The existence of a CAT(0) structure allows us to extend Theorem in the
C(3)-T'(6) case, using results of [NOP22|.

Corollary 11.4. A finitely generated group acting locally elliptically on a simply
connected C(3)-T(6) small cancellation complez fizes a point.

From the CAT(0) property of C'(3)-T'(6) complexes we also conclude the following
result closely related to the non-existence of infinite torsion subgroups. Recall that a
group satisfies the Tits Alternative if each of its finitely generated subgroups either
contains a free nonabelian subgroup or is virtually solvable. It is believed that
“nonpositively curved” groups satisfy the Tits Alternative, but this has been proved
only in a limited number of cases. See [SWO05; OP21; OP22| for more details. The
following theorem states that the Tits Alternative holds for groups acting almost
freely (there is a bound on the order of cell stabilisers) on C(3)-T'(6) complexes.

Corollary IL.5. Let G be a group acting almost freely on a simply connected C(3)—
T(6) small cancellation complex. Then G is virtually cyclic, or virtually 72, or
contains a nonabelian free group.

Finally, let us present an application of Theorem to automatic continuity.
This property has its origins in the descriptive set theory and, roughly, says that
every group homomorphism between topological groups is continuous. Recently au-
tomatic continuity has been established for a large class of homomorphisms into
“nonpositively curved” groups, see e.g. [KMV22| — we extend some results of that
paper in the following, where G is equipped with a discrete topology.

Theorem I1.6. Let G be a group acting geometrically on a locally finite, simply
connected C(6), C(4)-T(4), or C(3)-T(6) small cancellation complex X such that
the action induces a free action on the 1-skeleton of X. If H is a subgroup of G then
any group homomorphism @ : L — H from o locally compact group L is continuous
or there exists a normal open subgroup N C L such that ¢(N) is a finite group.

Related results

For finitely generated groups acting on uniformly locally finite simply connected
C(4)-T(4) complexes a version of Theorem has been proved recently in [HO21,
Corollary B(3)]. The proof there uses the fact (established in [Cha-+ a]) that groups
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acting geometrically on simply connected C'(4)-T(4) small cancellation complexes
are Helly. In particular, in the case of finitely presented groups the C(4)-T'(4) part
of Theorem follows from [HO21, Corollary B(3)]. We do not need such finite-
ness assumptions for our proof. As for further results establishing the Conjecture
and, more generally, the (Meta-)Conjecture from [HO21| in specific cases of small
cancellation let us mention the case of CAT(0) square complexes (an example of
C(4)-T(4)) following from [Sag95; [LV20|, the case of 2-dimensional systolic com-
plexes (an example of C'(3)-T'(6)) and other 2-dimensional CAT(0) complexes from
INOP22|, the case of (graphical) C(18) complexes from [HO21, Theorem F|, the
case of C'(1/4)-T(4) complexes from [Gen21|, and the case of some two-dimensional
buildings from [SST20].

Whether the Tits Alternative holds for small cancellation groups is an open
problem. In [Col73; AJ77; [EH88| the Weak Tits Alternative is shown, see [SW05|
for a discussion.

The C(4)-T(4) case of Theorem has been established in [HO21|, Corollary

Idea of the proof of Theorem

We restrict here to C'(6), and C(4)-T'(4) cases. First, we show that each element
of the group G fixes the center of exactly one 2-cell. Therefore G does not have
elements of infinite order, as such elements would not act freely on the 1-skeleton of
X. Then we show that if G acts on X without a global fixed point, then G has an
element of infinite order, contradiction.

To prove that latter implication, consider two elements f,g € G with Fix(f) #
Fix(g). We consider a “dual” complex Y of X: it is the quadrization in the C'(4)-T'(4)
case, and the Wise complex in the C'(6) case. These complexes are: quadric and sys-
tolic, respectively. In particular, Y is simply connected and G acts by automorphisms
onY.

Both Fixy (f) and Fixy (g) consist of one vertex each, we denote them by = and
y. Since Y is connected, we can find a geodesic v := (g := y,Z1,...,Zp := ) in
Y. We find k,[ such that 21 (resp. x,_1) is at distance at least 3 from g'x; (resp.
f*2,_1) in the link of y (resp. z). For such k,[ and any 4, we show that the path

a; = U (ffg")(yU f*y) is a geodesic. Therefore f¥g¢! has infinite order.
0<j<i

6.2 Curvature

Let D be a disc diagram that considered as a CW-complex is a square complex. In
this section we will call such diagrams square disc diagrams.
The square curvature of a vertex v € D is defined as

Kp(v) = 4= 26p(v) + pp(v),

where dp(v), as previously, denotes the valence of vertex v and pp(v) denotes the
number of squares incident to v, cf. Fig[6.1]
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KJ%(U) =2 KJ%(U) =1 KJ%(U) =0
KJ%(U) =0 KJ%(U) =-1 KJ%(U) = —]

Figure 6.1: All the possible neighborhoods of a boundary vertex v (red) of a square
disc diagram D such that —1 < x5 (v) < 2.

Analogously we define the curvature for simplicial complexes. Let D be a disc
diagram that considered as a CW-complex is a simplicial complex. In this section,
we will call such diagrams simplicial disc diagrams.

The simplicial curvature of a vertex v € D is defined as follows

Kp (V) =6 = 30p(v) +2p75 (v),

where p®(v) denotes the number of triangles incident to v, cf. Fig..

Klg(’l)) =3 Klg(’l)) =2 Klg(’l)) =1
A A
k() =0 &S(v):O

Figure 6.2: All the possible neighborhoods of a boundary vertex v (red) of a simplicial
disc diagram D such that —1 < ng(v) < 3.

We now state a version of the combinatorial Gauss-Bonnet theorem for CAT(0)
square and simplicial disc diagrams. Generalization of the Gauss-Bonnet theorem to
arbitrary 2-complexes was stated and proven by McCammond and Wise in [MW02,
Theorem 4.6]. The version for CAT(0) square disc diagrams was already stated by
Hoda in [Hod20l Proposition 1.8].

Proposition 6.2.1 (Gauss-Bonnet Theorem for a CAT(0) Disc Diagrams). Let D
be a CAT(0) square disc diagram and let E be a CAT(0) simplicial disc diagram.
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Then:
Z KD (v) =4 and Z nﬁ(v) =6,
veED veE
moreover:
Z KD (v) > 4 and Z /{@(v) > 6.
vedD vEIE

Proof. We only show the proof in the case of simplicial disc diagrams, case of square
disc diagrams is analogous, and was already proved by Hoda.

For a disc diagram the Euler characteristic x(E) is equal to 1. It can be computed
by subtracting the number of edges from the number of vertices and triangles. That
is, each edge contributes —1 to the Euler characteristic and each vertex or 2-cell
contributes +1. Distributing %1 to each of the endpoints of the edge, and +% to

each of vertices at the boundary of each triangle we obtain:

- FE)
X(B) =) £

velR

In the case of internal vertices, we have dg(v) = pg(v) and therefore by the
CAT(0) property /{ﬁ (v) is nonpositive for the internal vertices. O

The square and the simplicial curvatures have analogous properties, from now on
we will often not differentiate between them and just denote it by xp(v) with the
type of the curvature known from context.

Proposition 6.2.2. Let D be either a square or simplicial disc diagram and let
v C 9D be a geodesic in D. Then none of the internal vertices of vy has the curvature
greater than 1. Moreover, if u,v are internal vertices of v with kp(u) = kp(v) =1,
then there is a verter w € vy between v and u with Kp(u) < —1.

Proof. Let v := (vg,v1,...,v,). If m%(vi) > 1, then, by Figure we have v;_1 =
Vit1. If ﬁg(vi) > 1, then, by Figure , either v;_1 = v;+1 or there exists an edge
between v;_1 and v;41. Either case contradicts the fact that v is a geodesic.

Let u = v; and v = v;. Assume, without loss of generality, that xp(vs) = 0 for
i < s < j. If Dis asquare disc diagram, the distance between v;_1 and v;41 is equal
to at most the distance between v; and v;. If D is a simplicial disc diagram, the
distance between v;_; and v;j41 is equal to at most the distance between v; and v;
increased by one. Either case contradicts the fact that v is a geodesic. O

In fact, these properties of geodesics stated above characterize geodesics in sys-
tolic and quadric complexes.

Lemma 6.2.3. Let v := {g0,91,---,9n} be a path in an either systolic or quadric
complez X and let v = {9}, = 90,9,---,9m = gn} be a geodesic between the end-
points of v such that a minimal area disc diagram D for yU~' in X has the smallest
area. If for all 0 < i < j < n we have

> rplgr) <1,

i<k<j

then v is a geodesic.
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Proof. By Proposition all vertices along 7/ have nonpositive curvature in D.
Indeed, if for some 0 < ¢ < m we have kp(g;) = 1, then there exists a vertex
g/ € D incident to g;_; and g;_; (see Figures|6.1|and . Therefore, there exists a
smaller area disc diagram D’ for v U~", where v" := {g4,...,9i_1, 9/ 9is1 -+ 9n}-
Therefore, the sum of the curvatures along 7’ is bounded by 0.

On the other hand, the curvature along v is bounded by 1. Then by nonpositive-
ness of the curvature of the internal vertices and Proposition it follows that
the sum of the curvature of vertices gg, g, is at least 5 in the case of the simplicial
disc diagrams and at least 3 in the case of square disc diagrams. In either case at
least one of gg, g, has to be a spur, i.e. a vertex of valence 1.

We will show that D is a tree. Assume that D is not a tree and without loss of
generality assume that gg is a spur. We take the smallest ¢ such that g; is on the
boundary of a 2-cell. Then the curvature of g; = g, has to be negative (see Figures
, and the curvature of vertices g; = gg- for 0 < j < iis 0. Therefore, the sum
of the curvatures along +/ is negative. The sum of the curvatures of vertices g; for
1 < j < n is bounded by 1. Therefore the sum of the curvature along v is 0. Thus
the sum of the curvatures of vertices gg, g5, is at least 7 in the case of the simplicial
disc diagrams, or at least 5 in the case of square disc diagrams. This is possible only
if one of these vertices is not connected to the rest of the diagram, a contradiction.

If D is a tree and v is not a geodesic, then there exists vertex g; for 0 < j <n
that is a spur, but spurs have curvature greater than 1, a contradiction. ]

6.3 Combining geodesics

In this section, in Lemma and Lemma [6.3.4] we show that some particular
paths obtained via gluing two geodesics at their endpoints are geodesics themselves.
This is used in Section to construct automorphisms of infinite order.

6.3.1 C(4)-T(4) case.

Here we assume that X is a simply connected C(4)-7'(4) small cancellation complex
such that every 1-cell of X is contained in the boundary of a 2-cell. Let Y be the
quadrization of X. Let G be a finitely generated group acting on X by automor-
phisms and assume that this action induces a free action on the 1-skeleton X' of X.
It is clear that G acts on Y by automorphisms and this action induces a free action
on the sets of edges and vertices from Xy. Moreover, since by Proposition any
non-empty intersection of two 2-cells from X is connected, the action of G on Y
induces a free action on the set of squares as well. From now on, if D is a diagram in
Y and v is a vertex in D then v is mapped to a vertex in Y denoted by v¥. In some
cases, we denote by u” a vertex in D that is mapped to a vertex v € Y. Note that
there is some ambiguity, as more than one vertex can be mapped to u, therefore we
only use this notation when this ambiguity does not matter.

The aim of this section is to prove a technical Lemma [6.3.2] which is necessary
for the proof of the C'(4)-T'(4) part of Lemma the main lemma of Section
But first, we need to prove the following.

Lemma 6.3.1. Let D be a minimal area disc diagram i Y and © € D be a
vertexr such that x¥ is fived by some h € G. Let (Up,Up_1,...,u1,Uy = T =
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VOy Uly -+ y Uy Unp 1y Uy U1y + -« U1, Uy = T = V0, V1, - -+, Un,y Opt1) e a tuple of ver-
tices such that (see Figure[6.3):

1) hug/:vlyfor()gign;

2) hul #v) for0<i<n;

3) {unaun—lu"'aulv'xuvla'”7/Un)vn+l’ﬂn)an—la”'761755617'”7671767%%1} s a
ladder in D;
4) {AhzY pay Lo ) |2V oY oY (@Y Y, o) ok} ds a double ladder

with a cap in'Y.

=Y
hz¥  |hay Un
Y Y Yy
Un, Uy (I;Y vy U}L/ Upt1
Y Y [ . v _y
w,, uy T O oy
Figure 6.3:

Then at least one of the following holds:
(i) (@Y, vY ) €Y for some2<s<n+1;
(i) (WY, uY 5) €Y for some2<s<n;
(i) dy,(hz’,7Y) < 2.
Proof. By Proposition at least one of the following holds:

n+17 n— 1)€Y

Y
hus7 s—2

) € Y for some 2 < s <m;

The case (i) is satisfied if (a) or (c) holds.

If (b) holds, then case (ii) is satisﬁed. Indeed, if for some 2 < s < n we have
(hus,sg—hUSQ)EYthen( ul ) ey,

The case (iii) is satisfied if elther (d) or (e) holds. Indeed, if one of these cases
holds, then Ry := [7¥,2Y,hZY,hu}] or Ry := [z, 2Y,hz¥, v} ] is a square in Y,
therefore dy, (hz",z") < 2. O

Lemma 6.3.2. Let ©z € X3 and g € G be such that © € Fixy(g). Assume that
for every square P € Y containing x in its boundary, we have PN gP = {x}. Let
v = (x = x0,21,...,%n) and 2 := (T = Yo,Y1,---,Ym) be a geodesics in'Y, such
that n < m and for all i < n we have gx; = y;. Then a := v U2 1s a geodesic.
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Proof. Assume that a is not a geodesic. Then there exists a geodesic 8 between
ZTpn and yp,. From the set of geodesics between x, and y,, choose 8 such that the
minimal area disc diagram D for the path o U 3 has the smallest area.

We want to show that for any u,v € a such that z, < v¥ < v¥ < y,, if we
have kp(u) = kp(v) = 1, then there is a vertex w € a, such that u¥ < w¥ < v¥
and kp(w) < —1. It is clear that in such case the sum of the curvature along any
subpath of « is bounded by 1, and the assumptions of Lemma are satisfied.

First, observe that between v and v there is no vertex with curvature 2. Indeed,
a boundary vertex has curvature 2 iff it is an end of a spur (see Figure . By
Proposition such a vertex cannot be an internal vertex of a geodesic, so it has
to be mapped to x. But if 2 is a spur then g fixes a vertex from Xy, a contradiction.
Therefore each vertex between u and v is incident to at least one square (see Figure
6.1).

Assume that there are no vertices of curvature at most —1 between u and v.
Without loss of generality, we can assume that all vertices between u and v have
curvature 0 and by Figure [6.1] each of them is incident to two squares. Observe, that
u¥ # x # vY. Indeed, if kp(zP) = 1 then 2P is incident to exactly one square
P € D. Therefore there is PY € Y corresponding to P such that PY N gPY # {z},
a contradiction.

By Proposition u and v cannot be internal vertices of the same geodesic.
Therefore we can assume that u¥ € vy, v¥ € 9.

Now we will find a tuple satisfying the assumptions 1)-4) of Lemma[6.3.1] We be-
gin by taking the sequence uy = u,uny—_1,...,u1, Uy = P = VO, Uly e v o s UM 1, UM =
v of consecutive vertices in 0D between u and v. We have gu}o/ = U}D/ for p < N.

We assumed that uy, vy have curvature 1 and all of vertices between them have
curvature 0. Because of that the neighborhood of uy,...,u1,z”s,v1,...,va has
the following form. The vertex 2 is adjacent to three vertices, two of them being
u1, v1, we denote the remaining adjacent vertex by T. The vertex uy (resp. vyy) is
adjacent to two vertices, one of them uy_1 (resp. va/—1), we denote the remaining
adjacent vertex by uy (resp. Up7). For 0 < s < N (resp. 0 < p < M) the vertex
us (resp. vp) is adjacent to three vertices, two of them being us_1, us41 (resp. vp_1,
Upt1). We denote the remaining adjacent vertex by s (resp. Tp), see Figure [6.4]

’7/1 .o e ’\”2

uUN UN-1 [UN—-2 [ug T U1 UM—2 |VUM—-1 | UM

1y Uny-1 UN-—2 W T U1 Up—2 Up—1 VUM
1 1
1 \
1 \
4 \
’ ~
Figure 6.4: Disc diagram D in the neighborhood of uy, ..., u1,x,v1,...,0.
=Y =Y =Y =Y _ =Y _ =Y =Y =Y =Y
Let the sequence Uy, Upn_q,..., Uy, Uy = T = Vy,0y,...,03;_1,0, be the

corresponding sequence of vertices in Y. We have Tx" € v1 and 737" € 7o.

For any 0 < p < M, 0 < s < N we define squares V,, = [v;/_l,v;/,ﬁg,@z_ﬂ and
Us = [uY_1,u),wy,w) ] (we remind that * = v} = v} and ¥ =} =7v}). We

consider the subcomplex S C Y consisting of gUy, ...gUn, V1,...Vas. Let us remind
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that for s < N we have gu! = vY. We note here that it is possible that gu} = v}

as shown in Figure [6.5

e 7Y

7Y Ug

gfy guy GUug_1
g7

Y Y Y Y Y
T U1 vz_l Us Unr—2| Var—1 | M

Y . v — _
¥ U vy, 9Us =Ts Up—2 Vp—1 ' Uy

1

Figure 6.5: Example of the subcomplex S. In this case gu) =) and gu) , #v! ;.

It is clear that one of the following cases holds.

1) gz¥ =7".
2) gz¥ # T, and there is some p < N, such that gﬁ;; = @Z and gu, # v! for
s < p. pr:NthenwehaveN:Masﬁ}(,:gﬂxea.

3) gz’ # E;/, gu¥ # v¥ and for s < N we have gu! # v). In this case we have

=Y
JUN = UN41-

We will show that each of these cases results in a contradiction.

In case 1) g is not an identity and fixes . But ¥ is a O-cell in X, therefore we
have a contradiction to the freeness of the action of G on X!

In case 2) we have gﬂ},f = @Z and gu},f_1 #* U;/_l. It follows that d(gU, UV},) =
@g,@/_l, v;/_l, gﬂz_ﬁ is a 4-cycle in Y. Since Y is the quadrization of the complex
X, each 4-cycle spans a square and [@g,ﬂzfl, v},il, gﬁgfl] €Y. Figure show the
complex S.

Y. . gﬁY
=Y a7 ~Y =Y -1
gz guy gup—?) gup72 P

Y Y Y Y Y
x Uy Up—3 | Vp_2 Up—1 vp
=Y Y Y =Y —Y -y
T vy Up—3 Up—2 Up_y Up

Figure 6.6: The boundary of the union of gU, (blue+purple) and V,, (red+purple)
is a 4-cycle (green).

Thus the cycle @5,@5_1,...,E%/,Ty,x,gfy,gﬂi/,...,gﬂz_ﬁ bounds a double
ladder with a cap, where the square [@Z,@X_l,vg_l,gﬂg_ﬂ is a cap. Clearly, the
tuple

(up_l,up_Q, ey UL, T,V e ey Up—1, Upy Up—1, Up—2,5 + -, UL, T, UL, - ,ﬁp_l,@p)

satisfies the conditions of Lemma [6.3.1] Therefore one of the following holds:
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(i) for some 2 < s <p, (V) ,0),) €Y;

S
(ii) for some 2 <s<p—1, (@) ,ul ,) €Y;
(iii) there exists a square P in Y such that z € P and PNgP 2 {x}.

In case (i) both Ty and vs_o are vertices belonging to the geodesic y2. Therefore
(Vs—2,...,Var,Upr) is & geodesic, but (vs—2, Vs, ..., Tar) is a shorter path between the
same pair of vertices, a contradiction.

In case (ii) both ux and us_o are vertices belonging to the geodesic v1. Therefore
(us—2,...,un,uy) is a geodesic, but (us—g,Us, ..., uy) is a shorter path between the
same pair of vertices, a contradiction.

If (iii) holds, then we have a square P > z such that PN gP # {z}. A contra-
diction.

In case 3) we have a double ladder with a cap in Y bounded by the cycle

o Y vy Y _vy _y
<UN+1?,UN7""U17I. y Ly g agula"'aguN>
(see Figure [6.7).
- - 95%—1
gzY g’u}/ JUN_3|gUN_

Y Y
UnN+1 = GUN

- — - — — — 2N
x b UN-3 Un_2 Un_1 Un ”)1\/1-%1

Figure 6.7: Double ladder with a cap in Y. The square [v}\/,ﬂ,@%“, U, Uk is a cap.

Clearly, the set
{uN,uN,l, c, UL, T,V e, UNS UNH1, UN, UN =T+« , U1, T, U1, .- ,@N,UN+1}

satisfies the conditions of Lemma [6.3.1] Again each case following from this lemma
results in a contradiction.

Therefore between any two vertices z,, < u < v < Yy, such that kp(u) = kp(v) =
1, there is a vertex w such that u¥ < wY < v¥ and the curvature of w is at most
—1. As already mentioned, in such a case « satisfies the conditions of Lemma [6.2.3
thus « is a geodesic. O

6.3.2 ((6) case.

This subsection is quite similar to the previous one, with lemmas and proofs in this
section being analogous to the ones from the previous section. We begin this section
with analogous assumptions.

We assume that X is a simply connected C'(6) small cancellation complex such
that every 1-cell of X is contained in the boundary of a 2-cell. Let Y be the Wise
complex of X. Let G be a finitely generated group acting on X by automorphisms
and assume that this action induces a free action on the 1-skeleton X! of X. Tt is
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clear that G acts on Y by automorphisms. From now on, if D is a diagram in Y and
v is a vertex in D then v is mapped to a vertex in Y denoted by v .

The aim of this section is to prove a technical Lemma which is a C(6)
analogue of Lemma and is necessary for the proof of the C'(6) part of Lemma
the main lemma of the Section [6.5] We begin with a C'(6) analogue of Lemma
6.3.1]

Lemma 6.3.3. Let D be a minimal area disc diagram in'Y and x € D be a vertex
such that =¥ is fived by some h € G.

Let (un,un_1, ce UL, UY) =T =V, Vly- -y UnyUp, Up—1, - - -, U1, UQ, VY, V1, - - - 7671—17571)
be a tuple of vertices such that (see Figure .'

1) hu}/:vlyforogign;

2) hu! #7v) for 0<i<n;

3) {unvun—la”'vuhxavlw‘-7vn’ﬂn+17ﬂn7'"7617607607517‘"7@717571-&-1} s a
ladder in D;

4) {pud  hay .. hat Y ol oY oY, T } s a double ladder with a cap in
Y.

Then at least one of the following holds:
(i) for some 1< s<mn, (v),vY ) €Y;
(i) for some 1 < s<mn, (u.,ul ) €Y;

(ii) dy,(hud ,uy) < 3.

=Y =Y =Y =Y
hag huy hu, _, hu,
Y
U e
"i i ul Y vy v
— N —
Unp Up Vo U1 U}l/,l U}l/
Figure 6.8:

Proof. By Proposition [5.3.7] at least one of the following holds:

(a) for some 1 <s<n () ,v) ) €Y;

Vg, Vg1

(b) for some 1 < s <n (hu),vY ) €Y;
(c) (huy,vg) €Y

The case (i) is satisfied if (a) holds.

The case (ii) is satisfied if (b) holds. Indeed, if for some 1 < s < n+ 1 we have
(haY vy | = huY ) €Y, then (@) ,ul ) €Y.

The case (iii) is satisfied if (c) holds Indeed, dy, (huy ,a ) < 2, follows from
being incident to Ué/ . O
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Lemma 6.3.4. Let x € Y° and g € G, such that x € Fixy(g). Assume that for
every vertex y € Y belonging to the link of x in Y, we have dy,(gy,y) > 3. Let
v = (20 = z,21,...,2p) and y2 := (Yo = Z,Y1,--.,Ym) be a geodesics in'Y, such
that n < m and for all i < n we have gx; = y;. Then a = v U2 is a geodesic.

Proof. The proof is analogous to the proof of Lemma and has exactly the same
structure. We take a geodesic § between x, and y,, such that minimal area disc
diagram D for the path o U 8 has the smallest area.

As previously, we want to use Lemma [6.2.3] Therefore we need to show that
assumptions of that Lemma are satisfied, and again we do it by showing that for any
pair of vertices u, v € a, such that z,, < u¥ < v¥ <y, if we have kp(u) = kp(v) =
1, then there is a vertex w € a, such that u¥ < w¥ < v¥ and kp(w) < —1.

First, observe that between u and v there is no vertex with curvature greater than
1. A boundary vertex has curvature 3 iff it is an end of the spur and 2 iff it belongs
to the boundary of exactly one triangle (see Figure [6.2). By Proposition such
a vertex cannot be an internal vertex of a geodesic, so it has to be mapped to z.
But for every vertex y € Y belonging to the link of z in Y, we have dy, (gy,y) > 3.
Therefore, the curvature of x is at most 0. Assume that there are no vertices of the
curvature at most —1 between v and v. Then each vertex between u and v is incident
to at most three triangles (see Figure . We can assume that all vertices between
u and v have curvature 0 and by Figure [6.2] each of them is incident to exactly three
triangles.

By Proposition u and v cannot be internal vertices of the same geodesic.
Therefore, we can assume that u € v, v € 7o.

Analogously to the C'(4)-T'(4) version of this Lemma, we now want to find a tuple
satisfying the assumptions 1)-4) of Lemma Therefore we take the sequence
UN = U, UN_1,y...,U], Uy = T = vy, V1,...,UM—1,Un = v of consecutive vertices in
0D between u and v. Since N < n we have gu;/ = U;/ for p < N.

We assumed that upy, vjs have curvature 1 and all of vertices between them have
curvature 0. Because of that the neighborhood of uy,...,u1,x,v1,...,va has the
following form. Vertex x is adjacent to four vertices, two of them being uj, vi, we
denote the remaining adjacent vertices by g, vy so that (u1,%g), (v1,09) € D. For
0 <s <N (resp. 0 <p < M) the vertex us (resp. vp) is adjacent to four vertices,
two of them being us_1, ust1 (resp. vp—1, Up4+1). One of the remaining two vertices
is connected to us—1 (resp. vp—1), we denote it by ws_1 (resp. Up_1), the last vertex
is denoted by s (resp. Tp). Vertex uy (resp. var) is adjacent to three vertices, two
of them being uny_1, uny_1 (resp. var—1, Upr—1), we denote the remaining adjacent
vertex by uy (resp. Ty), see Figure

un UN—-1 Uy T U1 Vp—2 VpM—1 UM
, \/\/\ W\
un _ - - ... [ [ ‘EM
, UN-—1 Ug Vo G UM—2 UM—-1
// \\
, S o

Figure 6.9: The disc diagram D in the neighborhood of uy,...,u1,z,v1,...,vp1.
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Let the sequence ﬂ]}\/,,ﬂ%_l, e ,ﬂ}/, ﬂg,%y,ﬂ/, . ,@}\/4_1, 63]\/4, be the correspond-
ing sequence of vertices in Y. We have ﬂ% € v and 6}(4 € vo.
For any 0 < p < M, 0 < s < N we define the triangles V,, = [UZ_I,UZ,EZ_J,

V, = [U;/,EZ,U;/_I], Us = [ul [, u¥,uy ], and Uy = [u),u),u’ ;] (we re-
mind that z = u) = v}). We consider the subcomplex S C Y consisting of

gUi,....gUn,gU1,...,gUN,V1i,...,Var, V1,..., V. Let us remind that for s < N
we have guY = vY. Similarly as in the C(4)-T(4) case, it is possible that gu! =7},
as shown in Figure [6.10}

v __
_y guy gug_q

gug
% % y Y v
gn Us—2\ / Vs 1 Vs UM—2 YM-1_ vY;

-y v v v 'y v

— vy —y _
Y U Vg 9Us =Us Up—2 VM-1 UMY
AN

A \

12 N

~
~

Figure 6.10: Example of the subcomplex S. In this case gu) = v} and gu) , # v!_;.

It is clear that one of the following cases holds.

1) guy =70y .

2) guy # U , and there is some p < N, such that gﬂg = U}j and EZH £ gul #7v)
for s < p. pr:NthenwehaveN:MaSE%:gE%EQ.

3) guy #v¢, and there is some p < N, such that gﬂ;/ = @;/H and @;1 # gul #
oY for s < p.

4) guy # vy, gu¥ # v¥ and for s < N we have @zﬂ # gu) # v . In this case
we have gﬂ% = U}\/,H.

Like in the proof of Lemma [6.3.2] we will show that each of these cases results in
a contradiction.

In case 1) @y belongs to the link of z in Y and dy, (gug ,a ) < 3, a contradiction.

In case 2) we have gﬂg = @Z and guY | # U;/_l. It follows that there is a cycle
of the length 4 in the link of v;/ . Figure shows the complex S in that case.

—Y —Y
_y guy gup_q
guo .o
Y
Up—1\Yp
AVAN /W
vy e T
vy U UZ—l gu, =7,

Figure 6.11: Link of v} (red).
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as otherwise 7Y would be incident

p—1 p—1s P
to v _1, which contradicts the geodesity of s .
Clearly, the tuple

Slnce Y is systolic 7}_, is incident to gu.

(Up—1, Up—2,y - ., UL, T, V1, e oy Up 1, Up—1, Up—2s -+« , UL, T, VO, U1y -« - 5 Up—1)
satisfies the assumptions of Lemma Therefore one of the following holds:
(i) for some 1 <s<p—1 (vY,v) ) €Y;
(ii) for some 1 <s<p—1 (u’,ul ) €Y;

(iil) dy, (guo TS ) < 2.

In case (i) both Ty and vs—1 are vertices belonging to the geodesic y2. Therefore
(Vs—1,...,VN,0UN) is & geodesic, but (vs_1,Ts,...,UnN) is a shorter path between the
same pair of vertices, a contradiction.

In case (ii) both uy and us_1 are vertices belonging to the geodesic 1. Therefore
(Us—1,...,un,uy) is a geodesic, but (us—1,Ts, ..., Uy) is a shorter path between the
same pair of vertices, a contradiction.

In case (iii) u¢ belongs to the link z in Y and dy, (gug , %3 ) < 3, a contradiction.

In case 3) gﬂg = UZH' But gﬂ;‘; is incident to v;/_l. Both vy and v,_1 are
vertices belonging to the geodesic ;. Therefore (vy,—1,...,vn,UN) is a geodesic, but
(Up—1,Tp1,--.,0nN) is a shorter path between the same pair of vertices, a contradic-
tion.

In case 4) we have a double ladder with a cap in Y-

{guy ,gus , ... guy = v%+1|xy,v%/, N TY LTy

(see Figure [6.12]).

_ _ —Y —y —y
g’ué/ g’u{ gun_3 JUn_2 YGUN_1

/ ; ; ; ; ; AN 7Y
UN 7 UN+179UN

— UszNl

Figure 6.12: Double ladder with a cap in Y. The triangle [vY, v}\/fﬂ,@%] is a cap.

Clearly, the set

{’UJN,UNfl,. UL, T,V . 7/UN7ﬂN7ﬂNfl7' ")617E0560761)' . aﬁN}

satisfies the assumptions of Lemmal6.3.3] Again, each case following from this lemma
results in a contradiction.

Therefore between any two vertices z,, < u < v < Y, such that kp(u) = kp(v) =
1 there is a vertex w, such that u¥ < wY < v¥ and curvature of w is at most —1.
Therefore the sum of the curvature along any subpath of a is bounded by 1 and we
can use Lemma, to show that « is a geodesic. O
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6.4 Rotations

Let X be a simply connected C(4)-T'(4) or C(6) small cancellation complex such
that every 1-cell of X is contained in the boundary of a 2-cell. Let G be a finitely
generated group acting on X by automorphisms and assume that this action induces
a free action on the 1-skeleton X! of X.

By the following proposition each group element acts by a rotation on each 2-cell
fixed by it.

Proposition 6.4.1. Let g € G and T € Fixx(g). Then g acts on T by a rotation of
finite order.

Proof. Group G acts on X by automorphisms, therefore g acts on Z by an isometry.
Only possible isometries of 2-cells are reflections and rotations. reflections does not
act freely on 1-skeleton, therefore g acts by a rotation. Since Z is an n-gon for some
n, then by the freeness of the action on 1-skeleton g has an order m such that m is
a divisor of n. O

We now consider C'(4)-T'(4) and C(6) cases separately.

6.4.1 C(4)-T(4) case.
Let Y be the quadrization of X.

Lemma 6.4.2. Let T € X be a 2-cell fizred by f € G\ {id} and z be a corresponding
vertex in Y. Then there exists k = k(f) such that for any 0-cell y belonging to T we
have dy, (f*y,y) > 2.

Proof. TFirst observe that dy, (f¥y,y) < 2 means that for some piece p the intersection
p N fFp is non-empty.
By Proposition [6.4.1] f is a rotation of some finite order m. Therefore, there

exists ko such that f*o is a ‘clockwise rotation through %’. We claim that k = mTkO

for even m and k = w for odd m is as required.

Observe that if m is even then f2k is a rotation through 27 and if it is odd then
3k is a rotation through at least 27. Indeed, since m > 3, we have 3% > 2.
If for some piece p the intersection p N f¥p is non-empty, then we have three pieces
p, f¥p, f%p covering the whole boundary of Z, see Figure Contradiction with

the C(4) condition. O

6.4.2 ((6) case.

Let 7 be a 2-cell in X and vy, ve be a vertices from 0Z. By (v1,v2)° we denote
the clockwise path between v; and v9 in 0Z. For any piece p we assume that p =

(p1:pr) = (01, r)°
Let Y be a Wise complex of X.

Lemma 6.4.3. Let ¥ € X be a 2-cell fized by f € G and x be a corresponding vertex
in Y. Then either there exists k = k(f) such that for any other 2-cell y we have

dy, (f*y,y) >3 or f3 =id.
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Figure 6.13: Pieces covering whole boundary of the cell Z in the cases of even and
odd m.

Proof. First observe that dy, (f*y,y) < 3 means that for some piece p = ZN7 there’s
a piece p’ covering one of two arcs (p., f*»)°, (f*pr, p)®.

By Proposition f is a rotation of some finite order m. Therefore, there
exists ko (coprime with m) such that f* is a ‘clockwise rotation through %’”. We
claim that k = mTkO for even m and k = w for odd m is as required.

If for some piece p there’s a piece p' covering one of two arcs (p, fFp)°,
(f*pr,p1)®, then if either m is even, or p’ covers (f*p,,p;)® we have that f=*p’, p, p’
and f*p covers whole boundary of the cell, a contradiction to the C(6) condition

(see left part of the Figure [6.14)).
If m is odd and p’ covers (p,, f¥p;)®. we have three possible cases:

1. pn f2Fp # 0;

ro_ 3(m—1
2. fipn f'p =10 for any ¢ # r (mod m) and%

>m,;

3. wgm.

f2k

In the first case p,p’, fép, f¥p’ and p cover the whole boundary, a( congradiction
m—1

(see central part of the Figure |6.14). In the second case we have 2T <m <
3(m—1)
2

and in particular, since kg is coprime with m, we have 2k # 0 (mod m) and
3k # 0 (mod m). It follows that f?*pnp = f*pnp =0, hence f?*p' > p. Thus
P, fEp, £, f%p and f?*p’ cover the whole boundary, a contradiction (see right part
of the Figure . In the third case m = 3. O

6.5 Lack of global fixed point implies existence of group
element of infinite order
In this section we study closer the fixed points of the action of G on X. First, we

show that under assumptions from the previous section, each element of G can fix
at most one 2-cell in X, equivalently at most one vertex in Y.



6.5. EXISTENCE OF ELEMENTS OF INFINITE ORDER 79

3
\
V_% fz/«/)

//'
v
-
-

{
\

\/‘

Figure 6.14: Pieces covering whole boundary of the cell Z.

Lemma 6.5.1. Let g # 1 be an element of G such that Fixy (g) # 0. If v € Fixy (g)
then Fixy (g) = {v}.

Proof. Assume that there is another 2-cell such that v’ € Fixx(g).

First, we consider the C'(4)-T'(4) case. Let v := (vg := v,v1,...,0, := V') be
a geodesic in Y. Let k be given by Lemma and a = v U ¢gFy. By the choice
of k for any w incident to v we have dy,(g*u,u) > 2. Therefore for every square
P €Y containing v in its boundary we have P N g*P = {v}. By Lemma @ BT
a geodesic. Therefore v = ¢gF~. If v # o' then ¢* fixes a vertex in X, contradiction
with the freeness of the action on 1-skeleton.

Now we consider C(6) case. We note here that because of case ¢g° # id this case
cannot be proved analogously to C(4)-T'(4) one. Consider the set of all geodesics
between v and v’ in the complex Y. Since Y is systolic, the set of all vertices
incident to v’ belonging to these geodesics spans an n-simplex for some n > 0. This
simplex is fixed by g. Since Y is a Wise complex, g fixes an intersection of all 2-cells
corresponding to vertices of this simplex. That intersection is either a piece or a
vertex. Contradiction with the freeness of the action on 1-skeleton. O

The aim of the rest of this section is to prove that for any two elements of G that
do not fix the same 2-cell in X there exists an element of G of infinite order. By the
following lemma such an element cannot fix any cell of X.

Lemma 6.5.2. Let g € G. If Fixx(g) # 0 then g has finite order.

Proof. Let v € Fixx(g). It is a 2-cell in X, therefore for some n it is an n-gon. Let
v’ be a vertex belonging to the boundary of ¥. Since G acts by automorphisms on
X and g fixes v, there exists m > 0 such that ¢™v’ = v’. By the assumption of the
freeness of the action on the 1-skeleton g™ is trivial. O

Lemma 6.5.3. Let X be either C(4)-T(4) or C(6) complex. If Fixy (f) # Fixy(g)

and:
o X is a C(4)-T(4) complex and k = k(f),l = k(g) are given by Lemma[6.4.5;
e X is a C(6) complex and k = k(f),l = k(g) are given by Lemma[6.4.3,

then fkg' has infinite order.
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Proof. Let v := (xg :=y,x1,...,%, := x) be a geodesic in Y. Consider the images of
v under (f*g¢')? and (f*¢")?f*. Since G acts by automorphisms and + is a geodesic,
(fEghiy and (f*g¢!)! fF~ are also geodesics for any i.
We will prove that
a = |J (FFdY Uty

0<j<i

is a geodesic for any 4. In such a case f¥g! has an infinite order.

We argue by induction: first, observe that if k,[ are given by Lemma (resp.
by Lemma then the conditions of Lemma m (resp. of Lemma are
satisfied. It follows that ag is a geodesic.

Now, we will show that the geodesity of a;41 follows from the geodesity of «y.

To do that we first need to show that a; U (f*g')" "1y is a geodesic, this follows
from Lemma in the C(4)-T'(4) case (resp. Lemma in the C(6) case).
Indeed, a; and (f*g!)"+1y satisfy the conditions of Lemma then their concatenation
is a geodesic.

But then a; U (f*¢")+1y and (f*g')™*! fFv also satisfy the conditions of Lemma
6.3.2| (resp. Lemma [6.3.4). Therefore

air1 = o U (fFg) Iy U (fRgh) T Ry

is a geodesic.
By induction, «; is a geodesic for any <. O

This Lemma finishes the case of C'(4)-T(4) complexes, and it remains to complete
the case of C'(6) complexes. We remind here that in the case of C(6) complexes, it
is possible that for a given f, we cannot find k such that dy, (f*y,y) > 3. In such a
case by Lemma we know that f3 = id.

Lemma 6.5.4. Let X be C(6) complex. If G does not have a global fized point, then
there exists an element of infinite order in G.

Proof. Assume that G does not have a global fixed point. Let f, g be a group elements
such that {z} = Fixy (f) # Fixy (¢9) = {y}. We have three possible cases:

L f3 #id # g°
2. exactly one of f, g has order 3;
3. fP=¢g>=id.

In the first case, by Lemma [6.4.3] there exist k = k(f),l = k(g) such that the
conditions of Lemma m are satisfied, therefore f*¢' has an infinite order.

In the second case without loss of generality we can assume that f has the order
3 and g does not. Consider the conjugation of g by f. It has same the order as g
and fixes the vertex fy. If fy =y then f fixes y, a contradiction. By Lemma, [6.4.3
there exists [ = k(g) such that the conditions of Lemma are satisfied, therefore
f¢'f~'g" has an infinite order.

In the third case, observe that there is an element h of the order not equal to 3 in
the subgroup (f, g). Indeed, if all elements of (f, g) have order 3, then this subgroup
is a quotient of the Free Burnside group B(2,3) which is finite. This subgroup
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acts on a Wise complex, which is systolic. By [CO15, Theorem C| a finite group
acting on a systolic complex has a global fixed point, a contradiction to the fact that
Fixy (f) # Fixy (g).

Since Fixy (f) # Fixy(g) then at least one of Fixy (f), Fixy(g) is not equal to
Fixy (k). Thus clearly at least one of Fixy (fhf~ 1), Fixy(ghg™!) is not equal to
Fixy (h). By Lemma there exists k such that the conditions of Lemma [6.5.3]
are satisfied either for h and fhf~' or for h and ghg—'. It follows that at least one
of fhF f=1hF gh*g~1h* has infinite order. O

6.6 C(3)-T(6) is CAT(0)
In this section we prove Theorem and Corollaries [[T.4HIT.5]

Definition 6.6.1. A combinatorial 2-complex X is called a polygonal complex if an
intersection of any two closed cells of X is either empty or exactly one closed cell.

Proposition 6.6.2. Any simply connected T(6) complex is a polygonal complex.

Proof. By the result of Pride [Pri88|, all pieces in T'(6) complex are of the length
1 therefore each piece is exactly a closed 1-cell. It follows that any non-empty
intersection of two closed cells of X consist of exactly one closed cell. O

We can view the edges of X as segments of the length 1 and the closed 2-cells of
X as a regular Fuclidean polygons of side length 1. This induces a metric in X. It
gives us a criterion for a polygonal complex to be CAT(0). In the following definition
the length of an edge in the link of v is the angle in the corresponding polygon of X.

Definition 6.6.3. A polygonal complex X with a metric d satisfies the link condition
if for each vertex v € X every injective cycle in the link of v has length at least 2.

Observe that C'(3)-T(6) complex X does not necessarily have bounded size of
2-cells, therefore we consider a complex X, which consists of barycentric subdivision
of each cell in X. It is easy to see that X is a triangle complex, and each triangle has
one vertex corresponding to a center of a 2-cell from X, one to a center of a 1-cell
and one which is a 0-cell in X.

Clearly X is a triangle complex, but it does not satisfy the link condition with
metric induced by taking each 2-cell to be a regular Euclidean triangle of the side
length 1. Therefore, we induce another metric 9 in the following way: we take all
2-cells to be Euclidean triangles with angle § adjacent to a center of an 1-cell of X,

angle % adjacent to a center of a 2-cell of X and angle § adjacent to a O-cell from

6
X.

Proof of Theorem|[II.3 1t is enough to show that the complex X with metric 9 is
CATY(0). Since X with that metric has only one shape of 2-cells, therefore by [BH09,
Lemma 5.6] X is CAT(0) as long as it satisfies the link condition i.e. we have to show
that every injective cycle in each link has the length at least 2.

Let v be a vertex from X. If v is a O-cell in X then each corner has length at
least &. Each cycle in the link of v consists of at least 12 corners. Indeed, X satisfies
the condition T'(6), and each 2-cell adjacent to v in X is replaced in the link by two
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triangles in X. Each corner has length at least &, thus each cycle has length at least
2.

If v is a center of an 1-cell, then each cycle in the link of v has at least four
corners, each of length 7, so clearly each cycle has length at least 27.

If v is a center of a 2-cell, then each cycle in the link of v has at least six corners,
each of length %, so clearly each cycle has length at least 27. O

Proof of Corollary[II.4 Let a finitely generated group G act locally elliptically on a
simply connected C(3)-T'(6) small cancellation complex X. Define X and 0 as above.
Then X has rational angles with respect to G in the sense of [NOP22, Definition 2.3].
This follows from the fact that all triangles of X have angles 7,3, & and from an
observation on [NOP22| page 9] just after [NOP22, Definition 2.3]. Corollary follows

from [NOP22| Theorem 1.1(iii)]. O

Proof of Corollary[IT.5 Let X be a simply connected C(3)-T'(6) small cancellation
complex acted upon by G. Then, by Theorem G acts almost freely on the
CAT(0) complex X. By |OP22, Theorem A|, the group G is virtually cyclic, or
virtually Z2, or contains a nonabelian free subgroup. O

Remark 6.6.4. Another way of proving Corollary is applying [OP21, Main The-
orem|. One observes that X is reccurent with respect to G in the sense of [OP21,
Definition 2.1|. This is by Theorem and |OP21, Remark 2.3|, because X satisfies
[OP21] Definition 2.1(v)]. Moreover, X admits a simplicial map to one triangle with
angles 3, 7, &, whose restriction to each triangle of X is an isometry. It follows that
by [OP21, Example 2.5| the complex X satisfies [OP21, Definition 2.1(i)-(iv)].
Thanks to X being CAT(0) we can also deduce the following Lemma that will be

used in the proof of Theorem [[1.2]

Lemma 6.6.5. Let G act on C(3)-T(6) complex X by automorphisms such that the
action induces a free action on the 1-skeleton X' of X. Let g # 1 be an element of
G such that Fixx(g) # 0. If v € Fixx(g) then Fixy(g) = {v}.

Proof. Assume that g has two fixed points v # v'. It is clear that v and v’ are both
centers of 2-cells. The (unique) geodesic v between v and v’ in X is fixed by g. Since
~ has non-empty intersection with X', we get a contradiction. O

6.7 Proofs of Theorems and

In our case of GG acting on X by automorphisms in such a way that the action induces
a free action on the l-skeleton X! of X, if the action is additionally locally elliptic,
each element fixes a 2-cell, equivalently, the center of a 2-cell.

Proof of Theorem[II.9 Assume that the action of G on X does not have a global
fixed point.

In the C(4)-T(4) and C(6) cases we first observe the following. Each 1-cell of
X that is not contained in the boundary of a 2-cell can be thickened to a 2-cell to
obtain a new 2-complex X’ which deformation retracts to X. The complex X' is a
C(4)-T(4) (or C(6)) small cancellation complex. Moreover, the complex X embeds
into X’ and the action of G is preserved, therefore the action of G induces a free
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action on the 1-skeleton of X’ and does not have a global fixed point. This allows
us to use Lemmas from Sections 6.3H6.5]

By Lemma an element of the group G can fix at most one 2-cell of X'.
Assume that f, g are elements of G such that Fix(f) # Fix(g). Then in C(4)-T'(4)
case by Lemma m there exist k, [ such that f¥¢' has an infinite order. In C(6)
case by Lemma there exist an element of an infinite order. By Lemma [6.5.2
only elements of finite order can fix a 2-cell, hence G is not locally elliptic.

In the C'(3)-T'(6) case by Corollary any finitely generated subgroup of G has
a global fixed point. From Lemma [6.6.5each nontrivial element of G has exactly one
fixed point. As a consequence, any two nontrivial elements of G fix the same point.

Therefore, in the C(6), C(4)-T(4), or C(3)-T(6) cases there exists a 2-cell fixed
by all elements of G. It is an n-gon for some n. Then, by freeness of the group action
on the 1-skeleton of X, G is finite and cyclic. O

We now pass to the proof of Theorem For a group G and a metric space
X, a group action ® : G — Isom(X) is called proper if for each z € X there exist
a real number r > 0 such that the set {g € G|(B,(®(g)(x)) N By(x)) # 0} is finite.
The group action & is called cocompact if there exists a compact subset K C X such
that ®(G)(K) = X. We say that ® is a geometric action if it is both proper and
cocompact.

A group G is called artinian if any descending chain of subgroups G; D G2 O ...
becomes stationary, that is, G, = Gp+1 = ... from some n onwards.

Let G denote the class of all groups G with the following three properties:

(i) G does not include Q or the p-adic integers Z, for any prime as a subgroup;
(ii) G does not include the Priifer p group Z(p>) for any prime as a subgroup.
Proposition 6.7.1. IfG:
1. is a CAT(0) group; or
2. is a Helly group; or
3. is a systolic group;
then G s in the class G.

Proof. Cases (1) and (2) are known by Prop 5.2 of [KMV22].

Case (3). A systolic group is finitely generated, in particular it is countable, so it
cannot contain an uncountable subgroup Z,. It is known that an abelian subgroup of
a systolic group is finitely generated, see [OP18], thus systolic group cannot have Q as
a subgroup. Furthermore, any systolic group contains only finitely many conjugacy
classes of finite subgroups: |[Prz08, Corollary 1.3.], also [CO15|. Therefore, there is
a bound on the order of finite order elements in a systolic group, and therefore this
group can not have Priifer p group Z(p>°) as a subgroup. O

Proof of Theorem[II.6,. By Theorem B of [KMV22| the statement holds for sub-
groups of any group belonging to the class G whose torsion subgroups are artinian.
In the C'(4)-T(4) case, by Theorem 6.18 of [Cha+ a|, G is Helly because it acts
geometrically on X. In the C(6) case, G is systolic because it acts geometrically on
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the Wise Complex, which is systolic. In the C(3)-T'(6) case, by Theorem G
acts geometrically on a CAT(0) complex, therefore it is CAT(0).

Since H is a torsion subgroup of G, its action is locally elliptic on X, and by
Theorem we know that the subgroup H has to be finite. It is clear that finite
groups are artinian. O

6.8 Proof of Theorem

Let (X|R) be a presentation of a group G. The presentation complex of (X|R) is
formed by taking a unique 0-cell, adding a labeled oriented 1-cell for each generator,
and then attaching a 2-cell along the closed combinatorial path corresponding to
each relator.

The Cayley complex of G with respect to the presentation (X|R) (denoted
Cayley(G, X, R)) is constructed in the following way. Let the set of vertices of
Cayley(G, X, R) consist of all the elements of G. Then, at each vertex g € G, insert
a directed edge from g to gx for each of the generators x € X. The translation of
any relator r € R by any element of the group G gives a loop in the graph. We
attach a 2-cell to each such loop. The 1-skeleton of the Cayley complex is a directed
graph known as the Cayley graph. It is known [Hat00, Section 1.3] that the Cayley
complex is a universal cover of the presentation complex.

The presentation (X|R) of the group G is a C(p)-T(q) small cancellation pre-
sentation if its presentation complex is a C(p)-T(q) complex. In such a case, since
the Cayley complex with respect to the presentation (X|R) is a universal cover of
the presentation complex, it is a C'(p)-T'(q) complex as well [MWO02].

A spherical diagram S is a 2-sphere S? with a structure of a combinatorial 2-
complex. As in the case of disc diagrams, a diagram S in X is S along with a
combinatorial map from S to X denoted by S — X.

A presentation of a group is aspherical if there are no mon-trivial’ spherical dia-
grams in Cayley(G, X, R) in the sense of [LS01, I111.10, p.156]. The following theorem
states one of the known properties of groups with a small cancellation presentation.

Theorem 6.8.1. [Hue79, Theorem 4] Any C(6), C(4)-T(4), or C(3)-T(6) small

cancellation presentation is aspherical.

Before giving a proof of Theorem we need to state a theorem of Huebschmann
concerning groups with aspherical presentations.

Theorem 6.8.2. [Hue79, Theorem 3] Let G be a group with an aspherical presen-
tation (X|R). If x € G is an element of order 1 < s < oo, then there is a relator
r = z" with s|q, such that x is conjugate to er/s'

Proof of Theorem|[IL.1l Let Cayley(G,X,R) be either a C(3)-T(6) , a C(4)-T(4)
or a C(6) complex. Assume that H is a torsion subgroup of G. The action of
the group G on the 0-skeleton of the Cayley complex is free. As the 1-skeleton of
Cayley(G, X, R) is a directed graph, the action of G on the 1-skeleton is free. This
property is inherited by any subgroup of G, in particular H. Since H is a torsion
group, by Theorem [6.8.2] each of its elements is conjugate to a root of some relator.
Obviously, a root of a relator fixes the 2-cell corresponding to this relator in the
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Cayley complex, therefore the action of H on Cayley(G, X, R) is locally elliptic. It
follows from Theorem that H is a finite cyclic group. O
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1. Introduction

The Hall Harem theorem describes a condition which is equivalent to the existence
of a perfect (1,k)-matching of a bipartite graph, see [4, Theorem H.4.2]. When
k =1 this is exactly Hall’s marriage theorem, see [1, Sec. ITI1.2]. These theorems are
useful in amenability. For example, some versions of Tarski’s alternative theorem
can be obtained in this way, see [4, Chap. 4; 5, Sec. I11.1]. In [13], Kierstead found
a computable version of Hall’s marriage theorem. In this paper, we generalize his
theorem for arbitrary k£ and give an application of this generalization to effective
amenability.
To introduce the reader to the subject we recall the following definition.

Definition 1.1. Let X be a set and let G be a group which acts on X by per-
mutations. The G-space (G, X) has a paradoxical decomposition, if there exists a

*Corresponding author.
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finite set K C G and two families (Ay)rex and (Bg)rex of subsets of X such that

w- (e )uUe) < (U ) - ()

We call (K, (Ag)kek, (Br)ker ) a paradoxical decomposition of X.

Here we use a version of the definition given in [4], where some members Ay or
By can be empty. It is equivalent to the traditional one. A well-known theorem of
Tarski [23] states that the existence of such a paradoxical decomposition is opposite
to amenability of the G-space (G, X). In particular, a group is amenable if and only
if it does not admit a paradoxical decomposition.

It is worth noting that there is a variety of versions of this theorem in different
contexts, see for example [16, 19-21]. In this paper, we will study ones which are
natural from the point of view of computability theory, [22]. In the situation when
X = N and G acts by computable permutations one can additionally demand
that the families (Ax)rex and (Bk)ker consist of computable sets. We call such a
paradoxical decomposition computable.

One of the versions of Tarski’s theorem concerns a very general situation of
pseudogroups of transformations. The following definition is taken from [5, 9].

Definition 1.2. A pseudogroup G of transformations of a set X is a set of bijections
p: S — T between subsets S and T" C X which satisfies the following conditions:

(i) the identity idx is in G,

if p: S — Tisin G, sois the inverse p~!: T — S,

if pp : S— T and ps : T — U are in G, so is their composition psop; : S — U,
if p: S — Tisin G and if Sy is a subset of S, the restriction p|Sy is in G,

if p: S — T is a bijection between two subsets S, 7" of X and if there exists a
finite partition S = J,,, S; with p|S; € G for j € 1,...,n, then pisin G.

For v : S — T in G, we write a(y) for the domain S of v and w(y) for its
range 1.

Definition 1.3. When X is countable, after identifying X with N, we say that a
transformation p : S — T from G is computable if S and T" are computable subsets
of N and p is a computable function.

Note that for any tuples (aq,...,ax) and (b1, ..., bx) with pairwise distinct coor-
dinates where each b; is in the same G-orbit with the corresponding a;, the map
(a1,...,ak) — (b1,...,br) is a computable transformation from G.

A typical illustration of these notions appears in the case of discrete metric
spaces. We remind the reader that given a metric space (X, d) and a subset F' C X
the set N,,(F) = {z € X |d(z, F) < m} is called the m-ball of F. A metric space
X is called discrete if the 1-ball of every finite subset is finite.

Definition 1.4. For a metric space X, the pseudogroup W (X) of bounded pertur-
bations of the identity consists of bijections p : S — T such that sup,cg(d(p(x),z))
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is bounded by some natural number (depending on p). It is called the pseudogroup
of wobbling bijections.

When X is infinite and discrete the values sup,g(d(p(z),z)) for p € W(X) are
not uniformly bounded by a natural number.

Definition 1.5. When X is countable, then after identifying X with N, the effective
wobbling pseudogroup Weg(X) of X is a subset of W (X) consisting of computable
transformations of X.

We now formulate one of the definitions of amenability. Let G be a pseudogroup
of transformations of X. For R C G and A C X we define the R-boundary of A as

OrA={r e X\A:Ipc RUR ' (x € a(p) and p(x) € A)}.

Definition 1.6. The pseudogroup G satisfies the Fglner condition if for any finite
subset R of G and any natural number n there exists a finite non-empty subset
F = F(R,n) of X such that |0zF| < L|F]|.

The following theorem is a version of Tarski’s theorem mentioned above, see
[5, Theorems 7 and 25].

e The pseudogroup G satisfies the Fglner condition if and only if there is no tuple
(X1, X2,71,72) consisting of a non-trivial partition X = X; U X5 and v; € G with
a(v;) = X; and w(vy;) = X fori=1,2.

Remark 1.7. Definition 1.6 can be applied to an action of a group G on a set X
by permutations. In this case, we will say that the G-space (G, X) satisfies Fglner’s
condition.

The motivation for computable versions of this theorem comes from recent inves-
tigations in effective amenability theory, [2, 3, 17], where some effective versions of
Fglner’s condition were suggested. Our main result connects this approach with
paradoxical decompositions.

In Sec. 2, we generalize the work of Kierstead [13] concerning an effective ver-
sion of Hall’s theorem. These results will be applied in Sec. 3 to some computable
versions of Tarski’s alternative theorem. In Sec. 4, we study some complexity issues
which are naturally connected with the main results of the paper.

We do not demand any special education of the reader in computability theory.
Facts which we use are well known and easily available in [22]. Following trends in
logic, we say computable instead of recursive.

2. A Computable Version of Hall’s Harem Theorem

A graph I = (V, E) is called a bipartite graph if the set of vertices V' is partitioned
into sets A and B in such way, that the set of edges E is a subset of A x B.
We denote such a bipartite graph by I' = (A, B, E). The set A (respectively, B)
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is called the set of left (respectively, right) vertices. From now on we concentrate
on bipartite graphs. Although our definitions concern this case they usually have
obvious extensions to all ordinary graphs.

Let I' = (A, B, E). When (a,b) is an edge from FE, it is called adjacent to
vertices a and b. In this case, we say that a and b are adjacent too. When two
edges (a,b),(a’,b') € E have a common adjacent vertex we say that (a,b), (a’,b)
are also adjacent. A sequence (a1, as,...,ay) of vertices is called a path if each pair
(a;, aj+1) is adjacent for 1 < i < n.

Given a vertex x € A U B the neighborhood of z is the set

Nr(z) ={y€ AUB : (z,y) € E}.

For subsets X C A and Y C B, we define the neighborhood Np(X) of X and the
neighborhood Np(Y) of Y by

Nr(X)= |J Nr(z) CB and Np(Y)= | Nr(y) C A.
reX yey

The subscript I' is dropped if it is clear from the context.

In this section, we always assume that I' is locally finite, i.e. the set N(x) is
finite for all z € AU B.

A subset X of A (respectively, of B) is called connected if for all z, 2" € X there
exist a path (p1,...,px) in I' with x = p; and 2’ = px such that p;, € X U Np(X)
for all 1 < k.

For a given vertex v € AU B the star of v is a subgraph S = (V' E’) of T", with
V'={v}UNr(v) and E' = (V' x V)N E.

Definition 2.1. A matching ((1, 1)-matching) for I" is a subset M C E of pairwise
nonadjacent edges. A matching M is called left-perfect (respectively, right-perfect)
if for all @ € A (respectively, b € B) there exists (exactly one) b € B (respectively,
a € A) with (a,b) € M. The matching M is called perfect if it is both right and
left-perfect.

We now introduce perfect (1,k)-matchings for I' without defining (1,k%)-
matchings. We will use only perfect ones.

Definition 2.2. A perfect (1, k)-matching for I' is a subset M C E satisfying the
following conditions:

(1) for all a € A there exist exactly k vertices by1,...by € B such that
(avbl)w"’(avbk) € M;
(2) for all b € B there is a unique vertex a € A such that (a,b) € M.

Given a (1, k)-matching M and a vertex a € A the M-star of a is the graph
consisting of all vertices and edges adjacent to a in M.
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The following theorem is known as the Hall Harem theorem, and the first of

equivalent conditions below is known as Hall’s k-Harem condition, see [4, Theorem
H.4.2).

Theorem 2.3. Let I' = (A, B, E) be a locally finite graph and let k € Nk > 1.
The following conditions are equivalent:

(1) For all finite subsets X C A, Y C B the following inequalities hold: |N(X)| >
KX, IN(V)| > LY
(2) T has a perfect (1, k)-matching.

In order to define computable versions of these conditions, we follow Kierstead’s
paper [13]. Definitions 2.4-2.6 are due to Kierstead. Definitions 2.7 and 2.8 are
natural generalizations of the corresponding ones from [13].

Definition 2.4. A graph I' = (V, E) is computable if there exists a bijective func-
tion v : N — V such that the set

R:={(i,j) : w(i),v(j)) € E}

is computable.

Definition 2.5. A bipartite graph I' = (A4, B, E) is computably bipartite if T" is
computable as a graph with respect to some v and the set v71(A) = {n € N :
v(n) € A} C N is computable.

To simplify the matter below we will always identify A and B with N. Thus,
A (respectively, B) will be called the left (respectively, right) copy of N and the
function v will be the identity map.

Definition 2.6. A locally finite (bipartite) graph I' is called highly computable if
it is computable and the function n — |Np(n)| for n € N is computable.

Definition 2.7. Let I' = (A, B, E) be a computably bipartite graph. A perfect
(1, k)-matching M for T is called computable if the set {(i,7) : (v(i),v(j)) € M} C
N x N is computable.

Note that computable perfectness exactly means that there is an algorithm
which

e for each i € A, finds the tuple (iy,42,...,i;) such that (i,i;) € M, for all j =
1,2,...,k;
e when ¢ € B it finds i’ € A such that (i/,i) € M.

The remainder of this section will be devoted to a proof that the following
condition implies the existence of a computable perfect (1, k)-matching.

Definition 2.8. A highly computable bipartite graph I' = (A, B, E) satisfies
the computable expanding Hall’s harem condition with respect to k (denoted
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c.e.H.h.c.(k)), if and only if there is a computable function h : N — N with domain
N such that

e 1(0) =0,
e for all finite sets X C A, the inequality h(n) < |X| implies n < |N(X)| — k| X],
e for all finite sets Y C B, the inequality h(n) < |Y| implies n < [N(Y)| — £|Y].

Clearly, if the graph I satisfies the c.e. H.h.c.(k), then it satisfies Hall’s k-harem
condition. We emphasize that the requirements that h is total and computable,
essentially strengthen the latter ones. Moreover, [13, Theorems 2 and 5] state that
the natural effective version of Hall’s marriage theorem (i.e. when k = 1) does not
hold without the assumptions that h exists and is computable. It is worth noting
that [13, Theorem 2] is a citation of a result of Manaster and Rosenstain from [15].

Theorem 2.9. IfI' = (A, B, E) is a highly computable bipartite graph satisfying
the c.e.H.h.c.(k), then I" has a computable perfect (1, k)-matching.

Proof. We extend the proof of Theorem 3 of Kierstead’s paper [13]. Let h witness
the c.e.H.h.c.(k) for I'. Let us fix computable enumerations of A and B. We build a
perfect (1, k)-matching M by induction. The idea of the construction is as follows.
At step 0 put M = (). At step s we update the already constructed M in the
following way. For the first vertex x, from the remaining part of A or B we construct
some finite subgraph I's and a matching M in I'g. The matching M is updated by
adding the elements of M, adjacent to xs. The subgraphs I'g and M are constructed
so that after removal of the Mg-star of x4 from I', the remaining part still is a highly
computable bipartite graph satisfying the c.e.H.h.c.(k).

At the first step of the algorithm, we choose ag, the first element of the set A.
We construct the induced subgraph I'g = (Ao, Bo, Fo) so that Ay U By is the set of
vertices of distance of at most max{2h(k)+1, 3} from ag. Since the graph I is locally
finite (respectively, highly computable) the graph I'g is finite and can be found
effectively. It is clear that for all vertices v from Ay, Np,(v) = Np(v). Therefore,
for every subset X C Ay the inequality h(n) < |X| implies n < |Np,(X)| — k| X|.

Let Bg, denote the set of vertices v € By at distance max{2h(k) + 1,3} from
ap. It is clear that Np,(Bo\Bs,) = Nr(Bo\Bs,) = Ao. On the other hand since it
may happen that Np(Bg,) is not contained in Ay, it is possible that there exists a
subset Y C Bg,, such that |[Np,(Y)| < £|Y].

Since T' contains a perfect (1,k)-matching, there exists a (1, k)-matching in
Iy, that satisfies the conditions of perfect (1,k)-matchings for all a € Ay and
b € By\Bs,. We denote it by Mj. Since I'g is finite, the matching M, can be
obtained effectively. Let {(ao,b0.1),--.,(ao0,bo,k)} be the set of all edges from ay
which belong to M. At step 1 we define M to be the set of all these pairs.

Let T be the subgraph (yet bipartite) obtained from I' through removal of the
My-star of ag. Since the sets AU B, A and E are computable, and the matching
My is found effectively, the sets A’, B’ and E’ are also computable. Therefore,
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IV is a computably bipartite graph. Since I' is highly computable, the graph I
is highly computable too. To finish this step it suffices to show that I satisfies
c.e.H.h.c.(k).

Define h' : N — N by setting

W (n) 0 if n =20,
n)—=
h(n+k) ifn>0.

We claim that A" works for TV. We start with the case when X C A" and n > 0.
Since |Np/(X)| > |Np(X)| — k, then for n > 1 the inequality |X| > hA'(n) implies
INp ()] — K|X| > [Ne(X)] - IX|— k > n.

Let us consider the case when n = 0 and X is still a subset of A’. If X is
not connected, then its neighborhood would be the union of neighborhoods of its
connected subsets. Therefore, without loss of generality, we may assume that X is
connected. If X C Ay, then |Np/(X)| — k| X| > 0, since My was a (1, k)-matching
for I'y that was perfect for subsets of Ag.

Now, let a e X\AO If b071,...,b07k ¢ NF(X), then Np/(X) = NF(X), SO
|Np/(X)| — k| X| > 0. Assume that for some ¢ < k and some a € X, there exists
(a,bo i) € E. Since the distance between a and a’ is at least 2h(k) we have | X| >
h(k) + 1. Thus, |Np(X)| — k| X| > k and it follows that |Np/(X)| — k| X| > 0. We
conclude that the Hall condition for finite subsets of A’ is verified.

Now we need to show that I' satisfies c.e.H.h.c.(k) for finite sets Y C B’. We
have to show that the inequality #/(n) < |Y| implies n < |[Np/(Y)| — £|Y]. Note
Y ¢ B"=B\{bo1,...,b0r} and |Np/(Y)| > |Np(Y)| — 1.

In the case n > 0 the inequality |Y'| > h’(n) implies | N/ (Y)|—2|Y| > [Np(Y)| -
HY|-1>n+k—-1>n.

Let us consider the case n = 0. As before, we may assume that Y is connected. If
Y C By\Bs,, then |[Np/ (Y)|— % Y| > 0, since M satisfied the conditions of a perfect
(1, k)-matching for elements of By\Bg,. If ag ¢ Np(Y), then Np/(Y) = Np(Y') and
again |Np. (V)| — [Y] > 0.

Assume that there exists b’ € Y'\(By\Bs,) and there exists b € Y with the
edge (ap,b) € E. Since the distance between b and b’ is at least 2h(k) we have
Y| > h(k)+1. It follows that [Np(Y)|—1|Y] > k and |[Np (V)| — £|Y| > k—1 > 0.
As a result we have that the graph I" satisfies c.e. H.h.c.(k).

To force M to be a perfect (1, k)-matching, we use back and forth. Therefore,
we start the next step of our algorithm by choosing the first element of B’, say by ;.
We construct the induced subgraph I'y = (A1, By, F1) so that A; U By is a set of
vertices of I'" at distance at most max{2h'(k) + 2,4} from b; ;1. Let Bgs, denote the
set of vertices at distance max{2h'(k) 4+ 2,4} from b; ;. Since I'' contains a perfect
(1, k)-matching, there exist a (1, k)-matching in I'; that satisfies the conditions of
a perfect (1, k)-matching for all a € Ay and b € B1\Bg,. We denote it by M;. We
choose a; with (ai,b1.1) € M. Let {(a1,b1,2),...,(a1,b1 1)} be all remaining edges
of the Mj-star of a;. We update M by adding all edges of this star.
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Let I be a subgraph obtained from I through removal of the M;-star of a;.
Then I' is also a highly computable computably bipartite graph. We need to show
that T satisfies c.e.H.h.c.(k).

Define h” : N — N by setting

W () 0 if n =20,
n) =
h(n+k) ifn>D0.

To prove that h”(n) works for T we use the same method as in the case h/(n)
and T"”.

We continue iteration by taking the elements of A at even steps and the elements
of B at odd steps. At every step n, the graph I'("™) satisfies the conditions for the
existence of perfect (1, k)-matchings and we update M by adding k edges adjacent
to a,. Every vertex v will be added to M at some step of the algorithm. It follows
that M is a perfect (1, k)-matching of the graph I'. Effectiveness of our back and
forth construction guarantees that M is computable. O

3. Effective Paradoxical Decomposition

The following definition gives an effective version of a paradoxical decomposition.
Assume that a pseudogroup G acts on a countable set X. We will identify X with N.

Definition 3.1. Let G be a pseudogroup of transformations of a set X = N. An
effective paradoxical G-decomposition of (G, X) is a tuple (X1, X2,71,72) consisting
of a non-trivial partition X = X; LU X5 into computable sets and computable v; € G
with a(v;) = X; and w(y;) = X fori=1,2.

We now formulate the main theorem of this section.

Theorem 3.2. Let (G, X) be a pseudogroup of computable transformations defined
on N which does not satisfy Folner’s condition. Then X has an effective paradozical
G-decomposition.

Proof. This proof is an effective version of [4, Theorem 4.9.2]. Let R be a non-
empty finite subset of G and let n be a natural number such that for any non-empty
finite subset F of X one has [0gF| > 1|F|. Define a function dg on X by setting,
for all x,y € X,

dr(z,y) =min{fn e N:3p1,....,pp ERUR (p,0...0p1(x) is defined
and is equal to y)},

where in the case when there exists no n as in the formula above we put dr(z,y) =
o0o. The function dp satisfies the triangle inequality for any triple from X. Hence,
we use it as a metric. Since R is a finite set of computable transformations, the
set {(z,y) : dr(z,y) < k} is computable uniformly on k. Therefore, there is a
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computable enumeration of the set
{(z,y,l) € X x X x N:dr(z,y) <I}.

Let k be an integer such that (14 %)k > 3. By the choice of R, for any finite subset
F of the space (X,dr) we have [Ny (F)| > (1 + 1)|F|. Thus in this space, the size
of the k-neighborhood Ny (F) is at least 3|F.

To find the corresponding effective paradoxical decomposition consider the
bipartite graph I'(X) = (N, N, E), where the set £ C N x N consists of all pairs
(x,y) with dr(z,y) < k, with z,y viewed as elements of X. By discreteness of
(X,dgr) and computability properties of dr, the graph I'(X) is highly computable.

If F be a finite subset of N then |Np(F')| = |Ni(F)| > 3|F|. It follows that

[Ne(F)| = 2|F| = 3|F| = 2[F| = |F|.

Therefore, for any n € N and a finite subset F' of the left side of I'(X) the inequality
n < |F| implies that n < |Np(F')| — 2|F|. On the other hand viewing F' as a subset
of the right side we have

1 1
INe(F)| = 51F| 2 3(F| - 5|F| > |F].

Since the function h = id is computable, the graph I'(X) satisfies c.e.H.h.c.(2) with
respect to h. By virtue of the Effective Hall Harem Theorem (Theorem 2.9), we
deduce the existence of a computable perfect (1,2)-matching M in I'(X). In other
words, there is a computable surjective map ¢ : N — N which is a 2-to-1 map with
the condition that dr(x,¢(z)) < k for all z € X.

We now define functions 11,1, as follows:

{wl (n) = min(ny, n2),

Y2(n) = max(ni, n2), where ¢(n1) =n = ¢(n2),n1 # na.

Since the function ¢ realizes a computable perfect (1,2)-matching, both v and 1,
are computable.

Let X; be the range of 1;, i € {1,2}. Clearly, both of them are computable sets
and X U Xy = X. We define v; : X; — X by vi(n) = ¢(n). Since dr(z,vi(z)) < k
for all z € X, we have 7; € G. Therefore, (X1, X5,71,72) is an effective paradoxical
decomposition of X. O

Corollary 3.3. Let (X,d) be a countable discrete metric space. Assume that
West (X)) does not satisfy Folner’s condition. Then (X,d) has an effective para-
dozical Weg (X)-decomposition.

In the case of an action of a group G on X we will consider a more precise
condition.

Definition 3.4. Let X be a set identified with N and let G be a group which acts
on X by computable permutations. The space (G, X ) has a computable paradoxical
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decomposition, if there exists a finite set K C G and two families of computable
sets (Ak)kek, (Bk)kek such that

w(greu ) - (Us) - (=)

We call (K, (Ag)kek, (Bk)rkex) a computable paradoxical decomposition of X.

Observe that this definition makes sense without the assumption that any ele-
ment of G realizes a computable permutation of X. In fact, one may demand this
only for elements of K. Since Theorem 3.5 does not transcend the assumptions of
Definition 3.4 we do not consider the extended version. This theorem is a natural
development of Theorem 3.2.

Theorem 3.5. Let G be a group of computable permutations on a countable set
X which does not satisfy Folner’s condition. Then there is a finite subset K C G
which defines a computable paradoxical decomposition as in Definition 3.4.

Proof. In the beginning of the proof we repeat the argument of Theorem 3.2.
We denote by o the action of G on X. Find a finite subset Ky C GG and a natural
number n such that for any finite subset F' C X, there exists g € Ky such that

|F‘\f,TF| > 1 We may assume that Ky is symmetric. Let R = Ko U {1} and let a

function dgr be defined exactly as in the proof of Theorem 3.2:

dr(z,y) =min{n € N:3p1,...,pn € R(ppo...0p1(x) =y)},

where in the case when there exists no n as in the formula above we put dg(z,y) =
oo. Then viewing dgr as a metric, for any finite /' C X we have

1
ME) =R Fl 2 (14 1) IF)

Choose n; € N such that (1 + %)”1 > 3 and set K = R™. So for any finite F' C X
we have |N,, (F)| = |K o F| > 3|F|.

Now note that the set of edges of the bipartite graph I'(X) = (N, N, F), defined
in the proof of Theorem 3.2 consists of all pairs (z,y) € Nx N with y € Kox, where
x,y are viewed as elements of X under the identification X = N. Since G consists of
computable permutations and K is finite, the graph I'(X) is computably bipartite.
Since the degree of every vertex is computable (by application of K), the graph is
highly computable. Exactly as in the proof of Theorem 3.2 we see that the graph
I'(X) satisfies c.e.H.h.c.(2) with respect to h = id. By virtue of the Effective Hall
Harem Theorem, we deduce the existence of a computable perfect (1,2)-matching
M in T'p(X). In other words, there is a computable surjective 2-to-1 map ¢ : N — N
such that for any n € N there is g € K with n = go ¢(n).

Repeating the proof of Theorem 3.2 define functions 1, 12 as follows:

{¢1 (n) = min(ny,ny),

Y2(n) = max(ni, na), where ¢(n1) = n = ¢(nz), n1 # na.
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Since the function ¢ realizes a computable perfect (1,2)-matching, both 1 and
are computable. Moreover, they preserve (K )-orbits.

Define 61(n) to be g € K with ¥1(n) = gon and 62(n) to be h € K with
a(n) = hon. Observe that 01, 62 can be chosen computable and 6, (n),02(n) € K
for all n € N.

For each k € K define sets Ay and By in the following way:

Ak:{neNzel(n):k}, Bk:{neNzé’g(n):k}.

It is clear that these sets are computable and

For each n € Ay, the value ¢ (n) is k o n. Thus, ¢1(N) = | |, o x k o Ag. Similarly,
we can show that 12(N) = | |, . ko By. Since N = 11 (N) | |¢2(N), we have

X = (klal(k:oAk> || <k|e_j|(k:oBk>.

Therefore, (K, (Ak)rek, (Bk)rek) is an effective paradoxical decomposition of the
action of G on X. O

Remark 3.6. Groups of computable permutations of N are becoming an attractive
object of investigations in computable algebra. We recommend the survey paper [18]
and the recent paper of the second author [10]. Theorem 3.5 shows how naturally
these groups appear in computable amenability.

4. Complexity of Paradoxical Decompositions

The approach of this section is similar to that in [12]. Throughout the section,
we assume that G is a computable group. We then identify G with N and regard
multiplication of G and the inverse as computable functions N> —+ N and N — N,
respectively. Such a realization of G is called a computable presentation of G. For
simplicity, we assume that 1 is the neutral element of G. The expression ! means
the inverse in G.

Note that for any g € G the function g - x, x € G, defines a computable permu-
tation on N. In particular, the left action of G on GG is by computable permutations

of N.

Definition 4.1. The computable group G has a computable paradoxical decom-
position, if the left action of G on GG has a computable paradoxical decomposition.

By Theorem 3.5 (and its proof) we have the following statement.

Corollary 4.2. Let Ky be a finite subset of G and suppose there is n € N\{0} such
that the following condition is satisfied:

e for any finite subset F C G, there exists k € Ky with % > %
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Let ny be such that (1 + 1) > 3. Then the subset K = (K UK~')™ defines a
computable paradoxical decomposition as in Definition 3.4.

In particular, if G is a computable non-amenable group then it has a computable
paradoxical decomposition. This corollary leads to the following definition.

Definition 4.3. Let

F\EF 1
?ZI]BT:{KCGiSﬁnite:EInEN(V ﬁniteFCG)(EIk:EK)(| |\Zf| | 2—)}.
n

We call 207 the set of witnesses of the Banach—Tarski paradox.

Proposition 4.4. For any computable group the family Wpr belongs to the class
Y9 of the Arithmetical Hierarchy.

Proof. Since the group G is computable, for any finite subsets K, F' of GG, and any
n € N, we can effectively check if the inequality |F|\lf|F| < % holds for all £k € K.

Therefore, the set of triples (n, K, F') such that % < % holds for all k € K is

computably enumerable, i.e. belongs to 3.
Since the projection of this set to the first two coordinates is also computably
enumerable, the set

o = {(K, n) : (¥ finite F C I')(3k € K) <|F\kF| - l)}

Fl T n
belongs to the class H(l’. The set 20 g7 consists of all finite subsets K C G such that
there exists n € N with (K,n) € 2’3,. Thus, 2Wpr belongs to the class 9. O

It is well known that a finitely generated free group has a computable presen-
tation. We consider the following theorem as the most natural example where the
set W g is computable.

Theorem 4.5. The family Wpr is computable for any finitely generated free group.

Before the proof of this theorem we give some reformulation of witnessing. This
observation belongs to Cavaleri. It simplifies our original argument.

Proposition 4.6. Let G be a group and K be a finite subset of G. Then K € Wpr
if and only if (K) is a non-amenable subgroup of G.

Proof. The necessity holds by Fgolner’s definition of amenability. Assume that K ¢
Wpr. It follows that for every n there exists a set F), such that
[Fo\kFn| _ 1
VEe K) | ————— < — |.
e ) (Fp <
In order to show that (K) is amenable we follow the proof of [6, Proposition 9.2.13].

Take any n € N. Put m = n|K]|. Let us show that there exists to € G such that
the set Ftg" N(K) = {k € (K) : kto € F,,;,} is L-Fglner for K. Let T C G be a
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complete set of representatives of the right cosets of (K) in G. Clearly, every g € G
can be uniquely written in the form g = ht with h € (K) and t € T. We then have

[Fon| =) [Pt N (K. (4.1)

For every « € K, we have xFy, = ||, e (2Fmt ™' N (K))t, hence

2F\Fry = | | (@Fmt™" 0 (E)\(Fnt ™" 0 (K)E.

This gives us
e F \Fr | = Z |(zFpt™ ' N (K)\(Fnt ™! N (K)). (4.2)

Since for all z € K,
F,
|z Fp \ Fin| < [Fom| ‘,
m
using (4.1) and (4.2), we get

D IEEnt™ 0 E))\(Fnt ™ N (K))|

=> 1 U (@Fut ™ N {E)\(Ft ™ N (K)))| < !£m! > [Fmt ™t (K.

teT zeK teTl

By the pigeonhole principle, there exists ty € T" such that
_ _ 1 _
(K Fty ' 0 E)\(Fty ' N (K))| < —|Finto FN(K)|.

Clearly, Fp,ty 'N(K) is an %-F@lner set with respect to K. Since n was arbitrary,
(K) is amenable. This finishes the proof. O

Proof of Theorem 4.5. Let F be a finitely generated free group under the stan-
dard presentation. Since it is computable, the equation zy = yx can be effectively
verified for every x,y € F. We will show that K € Qg if and only if there exist
x,y € K such that xy # yx. This will give the result.

(=) Let us assume that zy = yz for every z,y € K. Since F is a free group,
there exists z € F such that all words from K are powers of z see [14, Sect. 1.2].
Since the subgroup (z) is cyclic, the subgroup (K) is amenable and for every n
there is a finite set F', which is an %—F@lner with respect to K. Clearly, K ¢ Wpr.

(<) Let us assume that there exist z,y € K with xy # yx. Then x,y generate
a free subgroup of F of rank 2. By Proposition 4.6 there is a natural number n such
that I does not contain %—F@lner subsets with respect to both {z,y} and K. O

We add few words concerning the following question:

e Are there natural examples with non-computable Qg7
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In [8] (see also [7]) we give an example of a finitely presented group, say Hya,
with decidable word problem such that detection of all finite subsets of H, 4 which
generate amenable subgroups, is not decidable. Applying Proposition 4.6 we see
that the set QW pr is not computable in this group. In [8], we used slightly involved
methods of computability theory. It can be also derived from [7, 8] that when a
computable group G is fully residually free [11], the corresponding set Wpr is
computable.

Acknowledgments

This research was partially supported by (Polish) Narodowe Centrum Nauki,
grant UMO-2018/30/M/ST1/00668. The authors are grateful to M. Cavaleri, T.
Ceccherini-Silberstein and L. Kolodziejezyk for reading the paper and helpful
remarks. In particular, the idea of Proposition 4.6 belongs to M. Cavaleri. We
are also grateful to the referee for remarks, corrections and suggestions.

References

[1] B. Bollobés, Graph Theory, an Introductory Course, Graduate Texts in Mathematics,
Vol. 63 (Springer, 1979).

[2] M. Cavaleri, Computability of Fglner sets, Int. J. Algebra Comput. 27 (2017) 819-
830.

[3] M. Cavaleri, Fglner functions and the generic word problem for finitely generated
amenable groups, J. Algebra 511 (2018) 388-404.

[4] T. Ceccherini-Silberstein and M. Coornaert, Cellular Automata and Groups, Springer
Monographs in Mathematics (Springer-Verlag, 2010).

[5] T. Ceccherini-Silberstein, R. I. Grigorchuk and P. de la Harpe, Amenability and para-
doxical decompositions for pseudogroups and discrete metric spaces, Proc. Steklov
Inst. Math. 224 (1999) 57-97.

[6] M. Coornaert, Topological Dimension and Dynamical Systems, Universitext (Springer
International Publishing, 2015).

[7] K. Duda, Amenability and computability, preprint (2019), arXiv:1904.02640
[math.GT].

[8] K. Duda and A. Ivanov, On decidability of amenability in computable groups, Arch.
Math. Log., https: //doi.org/10.1007/s00153-022-00819-5.

[9] P. de la Harpe and G. Skandalis, Un résultat de Tarski sur les actions moyennables
de groupes et les partitions paradoxales, Enseign. Math. 32 (1986) 121-138.

[10] A. Ivanov, Sofic profiles of S(w) and computability, Arch. Math. Log. 60 (2021) 477—
494.

[11] I. Kapovich, Subgroup properties of fully residually free groups, Trans. Amer. Math.
Soc. 354 (2001) 335-362.

[12] B. Khoussainov and A. Myasnikov, Finitely presented expansions of groups, semi-
groups, and algebras, Trans. Amer. Math. Soc. 366 (2014) 1455-1474.

[13] H. Kierstead, An effective version of Hall’s Theorem, Proc. Amer. Math. Soc. 88
(1983) 124-128.

[14] R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory, Ergebnisse der Math-
ematik und ihrer Grenzgebiete, Vol. 89 (Springer-Verlag, 1977).

[15] A. Manaster and J. Rosenstein, Effective matchmaking (recursion theoretic aspects
of a theorem of Philip Hall), Proc. London Math. Soc. 25 (1972) 615-654.



[16]
[17]
[18]
[19]
[20]
[21]

[22]
[23]

Computable paradozical decompositions 967

A. Marks and S. Unger, Baire measurable paradoxical decompositions via matchings,
Adv. Math. 289 (2016) 397-410.

N. Moriakov, On effective Birkhoff’s ergodic theorem for computable actions of
amenable groups, Theory Comput. Syst. 62 (2018) 1269-1287.

A. Morozov and P. Schupp, Computable permutations and word problems, Enseign.
Math. (2) 64 (2018) 143-160.

A. L. T. Paterson, Nonamenability and Borel paradoxical decompositions for locally
compact groups, Proc. Amer. Math. Soc. 96 (1986) 89-90.

F. M. Schneider, About von Neumann’s problem for locally compact groups, J. Non-
commut. Geom. 12 (2018) 1531-1549.

F. M. Schneider and A. Thom, On Fglner sets in topological groups, Compos. Math.
154 (2018) 1333-1361.

R. I. Soare, Turing Computability. Theory and Applications (Springer-Verlag, 2016).
A. Tarski, Algebraische fassung des massproblem, Fund. Math. 31 (1938) 47-66.



	Introduction
	I Computable aspects of amenability
	Preliminaries for Part I
	Hall's Harem Theorem
	Tarski's Alternative Theorem
	Geometric Von Neumann Conjecture

	Computable paradoxical decompositions
	Computable version of Hall's Harem Theorem
	Computable version of Tarski's Alternative Theorem
	Case of pseudogroups
	Case of groups


	Computable version of Schneider-Whyte's Theorem
	Preliminaries for part I
	Structure of the chapter
	Reflections
	Controlled sizes of cycles. Main theorem
	Notation used in the construction

	The construction
	Step 1, part 1
	Step 1, part 2
	Step n+1, part 1
	Step n+1, part 2
	Case (3) and the end

	Technical Lemmas
	Proofs of Claims
	Part 1
	Notation used in proof of Lemma 4.4.5
	Part 2

	Proof of the Main Theorem
	Computable entourages of coarse spaces


	II Locally elliptic actions on small cancellation complexes
	Preliminaries for Part II
	Small Cancellation Theory
	Quadric complexes and quadrization of a complex
	Systolic complexes and Wise complex

	Torsion subgroups of small cancellation groups
	Description of the results
	Curvature
	Combining geodesics
	C(4)–T(4) case.
	C(6) case.

	Rotations
	C(4)–T(4) case.
	C(6) case.

	Existence of elements of infinite order
	C(3)–T(6) is CAT(0)
	Proofs of Theorems II.2 and II.6
	Proof of Theorem II.1


	III Appended paper

