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Streszczenie

Przedmiotem niniejszej rozprawy jest model spaceru losowego w rzadkim losowym Srodowi-
sku (RWSRE). Rozwazamy czasteczke wykonujaca prosty spacer losowy na osi liczb catko-
witych. Porusza si¢ ona symetrycznie za wyjatkiem pewnych punktéow, wyznaczonych przez
dwustronny proces odnowy, w ktorych kladziemy losowy dryf. Innymi stowy, $rodowisko
podzielone jest na bloki losowej dtugosci; wewnatrz blokow czasteczka wykonuje prosty syme-
tryczny spacer losowy, za$ na ich kranicach wystepuje losowy dryf. RWSRE moze by¢ wiec
uwazany za model posredni miedzy dwoma znanymi modelami: klasycznym, prostym syme-
trycznym spacerem losowym (SSRW) oraz spacerem losowym w losowym srodowisku zadanym
przez ciag niezaleznych, jednakowo roztozonych zmiennych (RWRE). W zaleznosci od rozktadu
srodowiska, RWSRE moze posiada¢ cechy typowe albo dla SSRW, albo dla RWRE.

Jednym z celow pracy jest zbadanie, jak ta dychotomia przejawia sie w granicznym za-
chowaniu spaceru. Pierwsza czesé rozprawy dotyczy twierdzen granicznych typu quenched
dla pozycji spaceru oraz czaséw pierwszego przejscia. W pierwszej kolejnosci przedstawiamy
mocne centralne twierdzenie graniczne typu quenched dla pozycji spaceru, uogélniajac w ten
spos6b wyniki znane dla modelu RWRE. Nastepnie rozwazamy przypadek, w ktoérym rzad-
kos¢ srodowiska ma dominujacy wplyw na graniczne zachowanie spaceru i przedstawiamy
stabe twierdzenia graniczne typu quenched dla czaséw pierwszego przejscia. W tym przypadku
RWSRE przejawia cechy nieobserwowane dla RWRE.

Ostatnia cze$¢ rozprawy dotyczy maksymalnych czaséw lokalnych spaceru, tj. czasu, jaki
czasteczka spedza w swoich ulubionych punktach. Przedstawiamy twierdzenia graniczne typu
annealed dla ciggu maksymalnych czaséw lokalnych w dwoch przypadkach: dominujacego
dryfu i dominujacej rzadkosci. W pierwszym przypadku uzyskane wyniki moga by¢ uznane
za uogolnienie twierdzern znanych dla RWRE. W drugim przypadku, z powodu obecnosci
w $rodowisku dhlugich blokéw, na ktorych czasteczka porusza sie symetrycznie, natura jej
ulubionych punktow jest znaczaco inna.
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Abstract

The subject of this thesis is a stochastic model called a random walk in a sparse random
environment (RWSRE). We consider a single particle performing a nearest-neighbour random
walk on the set of integers. The movement is symmetric apart from some sites marked by
a two-sided renewal process, in which random drifts are imposed. That is, the environment
is split into blocks of random lengths; within each block, the particle performs a symmetric
random walk, while at the endpoints a random drift occurs. Therefore the RWSRE may be
considered as being in-between two well-known models: a classic, simple symmetric random
walk (SSRW) and a random walk in i.i.d. random environment (RWRE), and, depending on
the distribution of the environment, it may manifest properties resembling one or the other.

One of the goals of the thesis is to examine how this dichotomy may be observed in the
limiting behaviour of the walk. The first part of the thesis concerns quenched limit theorems
for the position of the walk and the sequence of first passage times. We begin by presenting
the case in which the strong quenched central limit theorem holds for the position of the walk,
generalizing results known for the RWRE. Next we focus on the case in which the sparsity
of the environment plays a dominant role in governing the limiting behaviour of the RWSRE
and present weak quenched limit theorems for the sequence of first passage times. In this case
the RWSRE exhibits properties not observed for the RWRE.

In the last part of the thesis we examine the sequence of maximal local times of the walk,
i.e. the amount of time spent by the particle in its favourite sites. We present the annealed
limit theorems for this sequence in two cases: the case of dominating drift and the case of
dominating sparsity. In the former, we obtain results that may be seen as a generalization of
those known for the RWRE. In the latter, the nature of the favourite sites is different because
of the presence of long blocks on which the walk is symmetric.
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Chapter 1

Introduction

One of the most classic stochastic processes is a simple random walk on the set of integers.
In this model, a particle moves along the axis, every unit time jumping with fixed probability
p to its right neighbour and with probability 1 — p to the left one. The process is a time
and space homogeneous Markov chain, that is its increments are independent of the past
and the transitions do not depend on time nor the current position of the process. It is well
known that the walk is recurrent if and only if it is symmetric, i.e. p = 1/2; its asymptotic
properties follow from classic results such as the strong law of large numbers, central limit
theorem or Cramér’s theorem. However, the homogeneity present in this model is not always
desired. In many applications one would like to consider obstacles in the environment that
would change the behaviour of the particle in some, possibly random, sites. As it turns out,
even a small perturbation in the environment affects the asymptotic properties of the walk. In
1981, Harrison and Shepp [16] described the behaviour of the simple symmetric random walk
in a slightly disturbed environment, replacing only the probability of passing from 0 to 1 by
some fixed pg € (0,1). They observed that the scaling limit is not the Brownian motion, as is

the case in homogeneous environment, but the skew Brownian motion.

Another way of perturbing the environment was proposed in the seventies by Solomon [28].
In his model, the drift occurs at every site and is chosen randomly with some distribution P.
The random walk in a random environment (RWRE) defined this way has been well studied
since. Various authors described how the choice of P determines such properties of the walk as
its transience and asymptotic speed |28, 1], limit theorems [15, 18|, or large deviations |9, 5|.
As it transpires, the randomness of the environment leads to phenomena not observed in the
classic model. For example, the walk may be sub-ballistic, i.e. transient, but with sub-linear
speed. Moreover, under suitable assumptions on P, the position of the walk no longer satisfies
a central limit theorem. Its scaling limit is closely related to the limit of a sequence of first
passage times, which lies in the domain of attraction of a stable law, with the parameters
and scaling determined by the distribution of the environment. In this case the rate of large
deviations is of polynomial order, in opposition to the classic, exponential rate present under
the assumptions of Cramér’s theorem. This change in the behaviour of the particle is caused,
roughly speaking, by the traps occurring in the environment, i.e. sites with unfavourable drift
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that have impact on the movement of the particle which is strong enough to be seen in the

macroscopic scale of the limit theorems.
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Figure 1.0.1: Exemplary trajectories of random walks. Horizontal lines indicate sites with

random drift; the darker the line, the stronger the drift to —oo.

Solomon’s model may be also seen as, in a way, homogeneous, since the drifts are usually

assumed to be independent and identically distributed, or at least stationary and ergodic. It

is therefore natural to consider slightly different construction of the environment, in which the

symmetric movement of the particle would be perturbed only in some sparsely located sites.

The model we intend to study was proposed first in [20] by Matzavinos, Rotershtein, and Seol,
and is called a random walk in a sparse random environment (RWSRE). Instead of putting



random drift at every site in the environment, we begin by marking a subset of integers by the
positions of a renewal process. The random drift is imposed only in the marked sites, and the
particle moves symmetrically everywhere else. This model may be seen as an interpolation
between the classic symmetric random walk and Solomon’s random walk in a random environ-
ment, or as a generalization of the latter. The asymptotic properties of the walk are driven not
only by the drift, but also by the sparsity, i.e. the lengths of intervals on which the movement is
symmetric. Therefore, we may expect that, depending on the interplay between the drift and
the sparsity, RWSRE should manifest properties resembling either a simple symmetric random
walk, or RWRE. Indeed, this dichotomy was already observed by Buraczewski et al. in [6, 7] in
the context of annealed limit theorems for the transient RWSRE. Under suitable assumptions,
the traps in the environment that have the largest impact on the movement of the particle are
of the same nature as those appearing in RWRE, i.e. are caused by unfavourable drift. In such
setting, the sequence of first passage times lies in the domain of attraction of a stable law,
whose parameters, like in RWRE, are determined by the distribution of the drift. However,
under different assumptions, ones that favour long distances between marked sites, the drift
no longer plays the dominant role in governing the movement of the particle. In most sites it
behaves like a simple symmetric random walk, and this change is reflected in the shape of limit
theorems. The limiting variable may be once again stable, but its appearance, as well as its
parameters, is caused by the presence of long blocks on which the walk is symmetric. When
the environment is strongly sparse, the limiting variable is no longer stable; an additional term
appears that comes from the random movement of the particle in the unmarked sites.

One of our objectives will be to describe how this phenomenon is reflected in the quenched
limit theorems, i.e. to investigate asymptotic behaviour of the walk in randomly chosen, fixed
environment. The first result, stated in Theorem 3.2.1, is a strong quenched central limit
theorem for the position of the walk. By adapting the techniques used previously for the
RWRE, we show that under relatively strong assumptions, for almost every environment,
properly scaled position of the walk converges in distribution to the standard normal variable.
Then, in Chapter 4, we pass to the setting of dominating sparsity, in particular strong sparsity,
in which the limiting behaviour of RWSRE is significantly different from that observed for
RWRE. In this case the scaling limit of the first passage times is determined by asymptotic
properties of the renewal process that was used to mark the points with drifts, as well as the
random movement of the particle in the blocks between them, while the influence of the drifts
is negligible. Moreover, the limit theorem is no longer strong, i.e. the scaled sequence of first
passage times does not converge in distribution for almost every environment. Instead, one
should consider the weak limit of the sequence (pn, w)nen given by

pnw(') = Pu [(Tn — EuT)/kn € -]

for appropriate scaling x,, where T}, is the time by which RWSRE reaches site n, P, is the
distribution of the walk in fixed environment w, and E,, is the expected value with respect to
P,,. Since the environment is random, (it )nen is a sequence of random measures and as such
may have a weak limit. The main result of Chapter 4 states that, under suitable assumptions
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on the distribution of the environment,

Hnw = G(N)a

where = denotes weak convergence. Here N is a Poisson point process with intensity determ-
ined by the renewal process used to mark the sites with drift (that is, the presence of N arises
from the sparsity of the environment), while G is a measurable map defined with the help of
the Brownian motion (that is, G comes from the limiting behaviour of a simple symmetric
random walk). Precise results are stated in Theorems 4.2.1, 4.2.2, and 4.2.3.

Another object of our interest will be the favourite sites of a transient RWSRE. More
precisely, we will study the annealed limit theorems for the maximal local times, i.e. the
amount of time spent by the particle in its favourite site. A natural presumption is that
this maximal time should be obtained at a site with strong, unfavourable drift that forces
the particle to make many attempts to cross the site. As we will see, this is indeed true for
RWRE and RWSRE under suitable assumptions on the distribution of the environment. In
the complementary case, however, when it is the sparsity that governs the limiting behaviour
of the walk, the maximal local time is obtained when the particle crosses a particularly long
block between the marked sites. As can be seen in Theorems 5.2.1 and 5.2.2, in both cases
the limiting distribution is Fréchet, that is, for every x > 0,

lim P |max Ly(n)/kp < x| =™

n—00 k<n
where P denotes the annealed measure and Lg(n) is the number of times the walk visits site k&
before reaching n. However, the scaling sequence k,, and the parameter v depend entirely either
on the distribution of drifts, or on the renewal process used to mark the sites. Interestingly,
this change of regime — between the domination of drift and sparsity — occurs under different
assumptions than for the first passage times. The reason, as may be seen from the arguments
used in the two cases, is the fact that first passage times and local times of a simple symmetric
random walk are asymptotically of different orders, while for a RWRE they are comparable.

The dissertation is organised as follows: in the remaining part of this chapter we define our
model formally and provide a summary of notation used throughout the thesis. Elementary
properties of the model are described in Chapter 2. Chapters 3 and 4 concern quenched limit
theorems for the position of the walk and first passage times, and in Chapter 5 we present
annealed limit theorems for maximal local times.
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1.1 Random walk in a (sparse) random environment

Let Q = (0,1)% and let F be the corresponding cylindrical o-algebra. A random element
w = (wp)nez of (Q,F) distributed according to a probability measure P is called a random
environment. Let X = ZN be the set of possible paths of a random walk on Z, with corres-
ponding cylindrical o-algebra G. Then any w € Q and i € Z gives rise to a measure P?, on X
such that P! [X =i] = 1 and

we  ifj=k+1,
Pl [ Xy =1 Xn =k ={1—w, ifj=k—1, (1.1.1)
0 otherwise,

where X = (X,,)neny € X. That is, under P! X is a nearest-neighbour random walk starting
from ¢ with transition probabilities given by the sequence w. In particular, it is a time-
homogeneous Markov chain.

Since the environment itself is random, it is natural to consider a measure P’ on (Q x

X, F ® G) such that

P! [F x G = /FPZU[G]P(dw) (1.1.2)

for any F € F,G € G. We shall write P, = Pg and P = PO, Observe that under P the walk
X may exhibit a long-time dependencies and thus no longer be a Markov chain.

The process X defined above is called a random walk in a random environment and was
introduced by Solomon [28]. A well-studied case is w being an i.i.d. sequence, which gives rise
to a random walk in i.i.d. random environment.

We will consider a specific choice of the environment that was introduced first by Matzavi-
nos, Roitershtein, and Seol in [20]. Consider an i.i.d. sequence ((£g, \i))rez € (N4 x (0,1))%
and define, for any n, k € Z,

n if kK =5, for some n € Z,

Sp =10, n =0,
1/2  otherwise.

0

Z?:l gja n > 0,
Wy = { (1.1.3)

The random walk evolving in an environment w defined by (1.1.3) is called a random walk in
a sparse random environment. We shall refer to the random sites S, as marked points and
write (£, A) for a generic element of the sequence ((x, Ak))kez-

The term sparse refers to the fact that, unless & = 1 almost surely, the random drift is
put only in the marked sites, while in the blocks between them, whose lengths are given by
the sequence (& )kez, the particle performs a simple symmetric random walk. In other words,
the impurities are put sparsely on Z. However, if £ = 1 almost surely, then we obtain once
again a random walk in i.i.d. environment. Therefore the RWSRE model may be seen as an
interpolation between a simple symmetric random walk and a walk in i.i.d. environment, or
as a generalization of the latter.
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Figure 1.1.1: Exemplary realization of the sparse random environment. Sites with random
drift are marked in blue. Under P,,, the walk obeys transition rules indicated by arrows.

1.2 Notation and basic definitions
We provide a list of definitions and notation we shall use throughout the thesis.

e For p € (0,1), by Geo(p) we denote the geometric distribution with parameter p sup-
ported on {0,1,...}, i.e. if G ~ Geo(p), then

P[G = k] = p(1 —p)k fork=0,1,2,...

e For a topological space Z by M;(Z) we denote the space of probability measures on Z
with the Borel o-algebra. For our purposes we will take Z to be an Euclidean space or
its subspace; M;(Z) equipped with the Prokhorov distance is then a separable metric
space which inherits completeness from Z. Similarly, by M, (Z) we will denote the space
of point measures on Z, equipped with the topology of vague convergence.

e For two functions f,g: R — R, we write f(t) ~ g(t) whenever f(t)/g(t) = 1 as t — oo.
A function ¢ is slowly varying at infinity if £(ct) ~ £(t) as t — oo for any constant ¢ > 0.

e For two numbers a, b we denote a A b := min(a, b) and a V b := max(a,b).

We will frequently make use of the following notation given in terms of the variables
((&cv Ak))kEZ: for i7j> ke Z7

_1—>\k_
Pk = SV

J
IL; ; = H pr with the convention that an empty product equals 1;

k=i
J 00 - 00

R;; = Z il k-1, R; = kazni,k—la R; = Z ;-1
k=i k=i

k=i

J J
Wi; = kaﬂk,ja W; = Z Sl ;.
k=i

k=—o0



Chapter 2

Random walk in a sparse random
environment

In this chapter we present basic properties of RWSRE, in particular invoke known results on
the transience criteria and the asymptotic speed of the walk. We also study quenched mean
and variance of the hitting times.

2.1 Some properties of the simple symmetric random walk

In this section we present some facts concerning the simple symmetric random walk which will
be used repeatedly in the next chapters.

Let, for the use of the next lemma, X = ()?n)neN denote a simple symmetric random walk
on Z. Let P! be the probability on the underlying probability space conditioned on the event
{Xo = i}, and let Ef denote the corresponding expected value. Let T, = inf{k € N : X}, = n}
be the first passage time of X. It is well known that every Tn is finite a.s. The next lemma
gathers facts on X that will be of use to us.

Lemma 2.1.1. The following hold for any 0 < i < N:

7

P'Ty < Tp] = ¥ (2.1.1)
E{[Tn ATo] = i(N — ). (2.1.2)
i 1 _ N =N +1)
E TN Ly <ty| = N : (2.1.3)
; 12N — ) (N — i)
E | To 1707, ] = 3N , (2.1.4)
!
E' |(Tn ATp)?| = 3 (i* = 2N + 2i* + iN® — 2iN) . (2.1.5)

Proof. The first two relations are well-known results on the gambler’s ruin problem and can be
obtained by solving recursive equations or by applying Doob’s stopping theorem to martingales
X, and Xz X2 — .



8 Chapter 2. Random walk in a sparse random environment

To show (2.1.3), consider a Doob transform of X with the harmonic function k(i) = i/N.
That is, consider a Markov chain on {0,1,..., N} with transition probabilities given by

S =it
P(i,j) = 5, j=i—1,
0 otherwise

fori e {1,...,N —1} and P(N, N) = 1. Since h(i) = P{[Ty < Tp], this Markov chain has the
same distribution as the process X conditioned on {Tn < Tp}, stopped upon reaching site N.
Therefore the sequence a; := E{ [T [T < Tp] satisfies

1—1 1+ 1
a; =14+ ——a;j—1+——a;+1, an =0.
21 21

Solving the equation gives a; = (N + ¢)(N — ¢)/3, which implies (2.1.3). Now (2.1.4) follows
by symmetry.

To obtain (2.1.5), we may apply Doob’s stopping theorem to the martingale M,, = )Z'ﬁ —
6n)?2 +3n2 +2n. For T =Ty ATy we get

i* =E'My = E'Mz = N*P[Ty < To] — 6N°E[T 15 _7 ]+ 3E'T” + 2E'T.

Applying the above formulae and solving for EiT?2 gives (2.1.5).

2.2 Basic properties of the random walk in a sparse random
environment

2.2.1 Estimates of certain processes related to the environment

Let, for k € Z,
_1—)\k
=y

Observe that (pg)rez is, under P, a sequence of i.i.d. random variables. We shall write p for
its generic element. Let, for integers i < 7,

J J J
Oy =[] Rij=> &Hix—1,  Wij=> &Iy, (2.2.1)
i pa pa

with the convention that II; ; = 1 for ¢ > j. We will also make use of the limits

> J
i = lim Rij = ;&H@k—h Wj = lim W;; = kz 1l 5. (2.2.2)
B S
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Note that if Elogp < 0 and Elog& < oo, both series are convergent almost surely as one can
see by a straightforward application of the law of large numbers and the Borel-Cantelli lemma
(see [4, Theorem 2.1.3]). The sequences (R;);cz and (W;);ez obey the recursive formulae

R =&+ piRita and W; = pi& + piWi—1. (2.2.3)

We can therefore invoke the proof of [4, Lemma 2.3.1| to infer the following result on the
existence of moments of R;’s and Wj’s. In what follows we write R (respectively W) for
a generic element of (R;)icz (respectively (W;);ez).

Lemma 2.2.1. Letn > 0. If Ep" < 1, Ep"&" < 0o, and EET < oo, then ER" and EW™ are
both finite.

2.2.2 Recurrence, transience, and the speed of the walk

Let X = (X,)nen be a random walk in a sparse random environment. For any k € Z, let
T = inf{n : X,, = k}. (2.2.4)

We shall refer to T3’s as the hitting or first passage times. The analysis of the sequence
T = (Tk)rez gives insight into relevant properties of the RWSRE. We will consider first the
hitting times along the marked sites, i.e. the sequence (Ts, )rez.

As it turns out, the variables R; ; defined in (2.2.1) may be used to express exit probabilities
of the walk.

Lemma 2.2.2. For anyi <k < j,

Rii1x

Ryy14
Rit1;

P2k[Ts, > Ts,] = . PFTs, < Ts,] = Mgy (2.2.5)

Rii1

Proof. Obtaining the formulae (2.2.5) for any fixed environment w is a matter of solving
a simple recursive equation. For fixed ¢ < j consider

pe = P5F [Ts, > Ts,] .

Then p; = 0,p; = 1. Conditioning on the first step of the walk and using Lemma 2.1.1, we

obtain
pe = NP [Ts, > Ts, | + (1 — A\p)PoF [T, > T, ]
_ (karl L Skl = 1pk> (1= M) (pkl LS 1pk>
Ekt1 1 &k &k
Solving this equation gives (2.2.5). O

In view of the asymptotic properties of the sequence (R1,)nen described in Section 2.2.1,
Lemma 2.2.2 may be used to determine the conditions under which RWSRE is recurrent or
transient. The following is Theorem 3.1 from [20].
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Proposition 2.2.3. Assume that Elogé < co. Then the following holds P-almost surely:

e if Elogp <0, then limy,_, X,, = 00;
o if Klogp > 0, then lim, o X,, = —00;
e if Elogp =0, then limsup,,_,., X, = oo, liminf, ,. X, = —occ.

From now on we will consider only RWSRE that is transient to the right, therefore we will

always assume

Elogp € [-00,0) and Elog¢ < oc. (2.2.6)

Note that the first condition in (2.2.6) excludes the degenerate case p = 1 a.s. in which X is
a simple symmetric random walk. Under (2.2.6), the RWSRE satisfies a strong law of large
numbers. The following result was first stated in [20] under more strict conditions, and then
generalised in [7].

Proposition 2.2.4. Assume that conditions (2.2.6) hold. Then

Xp/n—v, T,/n—1/v P—a.s., (2.2.7)
where
(1-Ep)E¢ - 2 .
o — ) TEonetrompene if Ep <1, Ep§ < 0o, E£® < o0;
0 otherwise,

with the convention 1/0 = occ.

As we will see in Lemma 2.3.1, the conditions under which v is non-zero guarantee that
ETg, < oo. The main point of the proof of Proposition 2.2.4 is an application of the ergodic
theorem to obtain the strong law of large numbers for T's, /n, which further implies the con-
vergence (2.2.7). For the full proof, we refer the reader to [20, Theorem 3.3| or |7, Proposition
2.1].

2.3 Hitting times of a random walk in a sparse random envir-
onment

In this section we examine the structure of the sequence of hitting times of a transient RWSRE
under the quenched measure P,,.

Let Ty, = Ts, — Ts,_, be the time that the particle needs to hit k’th marked point Sy,
after reaching Si_1. Note that Tp’s are independent under P, for any fixed w, but may
be dependent under P. The next lemma gives expressions on moments of Ty in the case of
a transient walk.
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Lemma 2.3.1. Assume that Elogp < 0,Elogé& < co. Then for any k € Z, P-almost surely,

E Ty = & + 26 W1, (2.3.1)
1
Var, Ty, = 8¢ Y (5?Wi_1 +EWE L+ 35?> T 1
i<k (2.3.2)

2 2 4 8
+ 56k~ g6 — 3G Wiot + G Wit AW

Proof. Observe that assumptions of the lemma guarantee that all the above series are conver-
gent P-almost surely.

Denote by T'(i,7) the time needed to reach j when starting from ¢. Then Ty, has the
same distribution as T'(Sk, Sk+1), which may be decomposed as follows: first, we consider the
first step of the walk, i.e.

d
T(Sk7 Sk—i—l) - ]- + :H-X1=Sk+1 T(Sk + ]-a Sk+1) + 1X1:Sk71 T(Sk - 1) Sk+1)7

for T(Sk + 1, Sk41) and T(Sg — 1, Sk+1) independent of X;.
Next, we decompose T (S + 1, Sky1) with respect to the point by which the walk exits
interval [Sk, Sk+1]. Let Tk% = T(Sk +1, Sk>,T}§ = T(Sk + 1, Sk+1), then

d
T(Sk +1,8k+1) = Ly cqr (T + TSk, ) + Lppoqr TiF
= TkL A '_Z—']f,L2 + ﬂTkL<TI§ T’(Sk, Sk_|_1)

where T"(Sk, Sk+1) is a copy of T(Sk, Sk+1), independent of T'(Sk + 1, Sk11), TkL, and T,f‘.
Similarly, with T)F | = T(S, — 1, 5;) and TF | = T(Sk — 1, Sk—1),

d

T(Sk—1,841) = T AT,
+ e <R T(Sk—1,5%)
+ T"(Sk, Skr1)-

Denote pg = E,Tg. Using (2.1.1) and (2.1.2) we get

E,T(Sk + 1, Spt1) = Eo[TE ATE) + P[TF < THIE,T(Sk, Skt1)
-1
=&py1 — 1+ &Lﬂkﬂy
Eht1
E,T(Sk — 1, k1) = Eo[TE  ATE ]+ PTE | < TE JELT(Sk_1, Sk) + ET(Sk, Ski1)
1

:gk_1+€k

/‘I/k + ,u'k,‘+17

which leads to

-1 1
Hit1 = Ak (€k+1 + &H/%Jrl) + (1= ) <§k + — g+ Mk+1> -
Ekt1 &k
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Assume we have verified that pp < oo for every k € Z. Then the above formula may be

rewritten as

Pl — ok E5 4 i + . (2.3.3)
k1 &k
Iterating (2.3.3), we obtain
K a o
k1 _
= = Z (pi&i + G )i + Ty o, (2.3.4)
gk-‘rl i—n ffn

which gives

k
P D (piki+ v )iy = Egra + 2Wa,
St o

if we may verify that II_,, yp—n/§—, — 0 as n — oc.
To show (2.3.1) formally, one may repeat the above calculation for the truncated times
Ty A M, for M > 0. One then sees that a sequence pui! = E, [Ty A M] satisfies

M M k
K p
&1:: < Pkgik + prék + &pr1 < Z (pi&i + &ip1)Mipr g + 11, M.

it=—n

Observe that the assumption Elog p < 0 guarantees that II_,, ;. — 0 P-almost surely. Therefore
o M 2
P = lim gty <y + 2861 W,
M—o0

P-almost surely. In particular, u; < oo P-a.s., for every k € Z, and (2.3.4) holds. This in turn
implies
fka1 = Eppy + 2801 Wi

and ends the proof of (2.3.1).
Next, denote o = E,T?. A similar calculation using Lemma 2.1.1 and relation (2.3.3)

gives
o o
LA R R (2.3.5)
k41 €k
where
1
Jrr1 = 3 (&1 + Pr&R — 4,11 — 4prés)
2 (Pt 2 M (.2
+ = =€+ 1) +po— (& — 1
(B gy )
201f 41
4 R
k1
Proceeding as before, we obtain (2.3.2). O

Having obtained the exact formulae for the quenched mean and variance of the hitting
times, we may proceed as in the proof of Lemma 2.2.1 to show the following result:
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Corollary 2.3.2. IfEp? < 1, E€?p? < oo, and E¢* < oo, then ET < 0o and E[Var,T1] < cc.

Observe that Ty can be decomposed into a sum of two parts: the time the particle, after
reaching S;_1, but before it hits Sy, spends to the left of S;_1, and the time it spends to the
right of Si_1. For technical reasons that will become clear below, we divide the visits exactly
at point Si_1 between these two sets depending on the direction from which the particle hit
Si—1. To be precise, we define

TZ = HTL € (TskflvTSk] : Xn < Sk:fl or (Xn 17 ) (Sk 1— 1 Sk 1) (236)

ie. Té/, is the sum of the time the particle spends in (—o0, Sk—1 — 1] and the number of steps
from Sg_1 — 1 to Si_1. Similarly we define

= Hn S (Tskil,TSk} 2 Sp_1 < X, < S or (Xn 1, X, ) (Sk 1+ 1,5, 1)}‘ (2.3.7)

Thus we can write
Ty, = Ts, — Ts,_, = T, + T%.

Observe that, given w, the random variables {T} }ren are independent under Py, however for
fixed k, Ti; and T}, mutually depend on each other.

Lemma 2.3.3. Assume that Elogp < 0,Elogé < co. Then for any k € Z, P-almost surely,

E T}, = &, (2.3.8)
Var, Ty = (6t - €8). (23.9)
E T, = 26, Wi_1, (2.3.10)

Var, T}, = 8¢, > (éW? L+ EWii + 5 (E fz)> ik~
i<k (2.3.11)

HAGWE | + 46 Wi 1.

Proof. Fix k € Z. Observe that, under P, T} ; equals in distribution to the time it takes
a simple symmetric random walk on [0, £+1] with a reflecting barrier placed in 0 to reach &4
for the first time when starting from 0. This is the reason we include into T}, ; the visits at
Sk, but only those from Si + 1. Equivalently, it is the distribution of the time it takes a simple
symmetric random walk starting from 0 to reach —&x1 or &,11. Therefore (2.3.8) and (2.3.9)
follow from Lemma 2.1.1. Now, (2.3.10) follows from (2.3.1) and (2.3.8).

To examine the variance of Tﬁc 41, Observe that we may express it as a sum of independent
copies of a variable F}, which denotes the length of a single excursion to the left from Sj.

That is,
My, N

Thoy = > > Fu(jim), (2.3.12)

m=0 j=1

where My, Ny,’s and Fy(j, m)’s are independent under P,; M} is the number of times the
particle hit Sy from the right before it reached Si41, and N,, is the number of its excursions
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to the left between m’th and m + 1’st step from Sy to Si + 1. Observe that M} is geomet-
rically distributed; by (2.1.1), its parameter is 1/&;11. Moreover, N,,,’s are also geometrically
distributed; since the probability of going left from Sy is 1 — A\g, we have N, ~ Geo(\).

Recall that if Sy = ZZ]\L 1 X; for some random variable N and an i.i.d. sequence (X,)nen
independent of N, then

VarSy = EN - VarX; + VarN - (EX1)?. (2.3.13)
The above formula together with (2.3.12) easily entails

Va‘ergc—&-l = §k+1pkvaerk + (f;%_HPi + €k+1pk) (Eka)z
= 1Pk B FE + &1 pi(Bu Fi)?.

From here on we may proceed as in the proof of Lemma 2.3.1. Since F}, is the time of a single
excursion from Sy that begins with a step left, we have

Fy. g 1 —|—T(Sk — 1,Sk).

Decomposing T'(Si — 1,S) depending on the point by which the particle left the interval
[Sk—1, Sk], we obtain, with the help of Lemma 2.1.1,

EwT(Sk — I,Sk) = gk -1+ &,

&k
4 1 2 s o
E,T(Sp —1,5,)%=1— = 3 g R - = —.
WT'(Sk — 1, Sk) 3§k+35k+3<§kuk £k>+£k
In particular,

Now, (2.3.11) may be obtained using Lemma 2.3.1 and relation (2.2.3).



Chapter 3

Limit theorems for a random walk in
a sparse random environment

3.1 Limit theorems for a random walk in a sparse random en-
vironment: an overview

In this section we present an overview of known results concerning limiting behaviour of
transient RWSRE. Since a walk in i.i.d. random environment is a special case of RWSRE, it
is natural to first evoke limit theorems in this case.

3.1.1 Independent, identically distributed environment
Assume that Elog p < 0 and let r : [0, 00) — [0, 00] be defined as
r(z) = Ep®. (3.1.1)

We will assume that r is finite in some neighbourhood of 0. Observe that the function r is
convex. Moreover, 7(0) = 1 and 7/(0) = Elog p < 0. This implies that if an o > 0 satisfying

r(o) =1 (3.1.2)

exists, then it is unique. Moreover, r(z) < 1 for 0 < z < a and r(z) > 1 for x > «. It may
happen, however, that such @ > 0 does not exist, since r may jump to +oo before obtaining
value 1 or decrease to 0 if p < 1 almost surely.

It turns out that the limit theorems for a walk in i.i.d. environment depend entirely on
the function r. If 7(2) < 1, then under the annealed measure a CLT holds for the sequence of
hitting times, from which it is not difficult to deduce a CLT for the position of the walk (see
[22, Theorem 3.8]). Different behaviour appears if (3.1.2) holds for a € (0,2). It was shown
by Kesten et al. in [18] that in this case, under the annealed measure, the sequence of hitting
times lies in the domain of attraction of some a-stable variable L,. The limit of (X,,),en is
not Gaussian, but is closely related to this a-stable law. For example, if o € (0,1), then
lim P [X” >x] :]P’[L <x_1/°‘} (3.1.3)

- o . 1.

n—00 n

15
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For the full statement, in particular the case a € [1,2), see the main Theorem in [18].
To describe the quenched limit theorems, observe that for any sequences ay, b,, possibly
depending on w,

) =P [P ]

Qn,

is, under P, a random element of M;(R), i.e. a random probability measure on R. Therefore
one can distinguish two types of limiting behaviour of (p,)neny. We will say that a strong
quenched limit theorem for 7" holds, if u, — p almost surely in M;j(R), that is for P-a.e. w
the sequence of measures (tn o )nen converges to 1 in the Prokhorov metric. We will say that
a weak quenched limit theorem for 7" holds, if p, = p in M;(R), that is for any bounded,
continuous function f : M;(R) — R we have Ef(u,) — Ef(¢) as n — oc.

If (2) < 1, then it may be shown that

Tn - Ean
— " K t} — ®(t) P-as.,
O'\/'E

for some constant o, where ® is a cumulative distribution function of a standard normal
variable. This fact is used in [15] by Goldsheid to deduce a strong quenched CLT for the
position of the walk. However, the quenched counterpart of (3.1.3) is more complex. As seen

lim P, [

n—oo

from the results presented in [21, 24], in the case o < 2 there is no strong quenched limit
theorem for T'. Indeed, it turns out that in this case one can find different strong quenched
limits for the hitting times along different subsequences. This in turn leads to the analysis of
T in the weak quenched setting. To this end, consider the mapping H : M, ((0,00)) — M;(R)
given as follows: for a point measure ( = Zi21 dz;, where (2;);en, is an arbitrary enumeration
of the points, define

P [Zi>1 zi(r —1) € ] if zi>1 r? < o0,
do(-) otherwise,

H(C)() :{

where the probability is taken with respect to (7;);en, a sequence of i.i.d., mean one exponential
random variables. Then the main result of [23] states that for o < 2,

T, — BT,
P, {”1”" € ] = H(N) (3.1.4)
nl/a
in M1(R), where N is a Poisson point process on (0, c0) with intensity cyxz~*"'dz for some
constant ¢y > 0. From this follows a quenched version of (3.1.3); namely, for a € (0, 1), for
any x € R,

X -1
P, [ng < a:} = H(N)(z~Y* o). (3.1.5)
The limiting variables in the case a € [1,2) are more complex; we refer the reader to [23,
Corollary 1.8]. Observe that the convergence in (3.1.5) is given in terms of pointwise weak
convergence of quenched cumulative distribution functions, therefore it is even weaker than
a weak quenched limit theorem.
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3.1.2 Sparse environment

In the setting of a sparse random environment, the asymptotic behaviour of the walk is driven
by two ingredients. The first one is the drift, that is the distribution of A\. The second one
is sparsity, that is the tail behaviour of £&. Since RWSRE may be seen as a model in-between
a walk in i.i.d. environment and a symmetric one, we may expect that, depending on the
interplay between the drift and the sparsity, it should manifest behaviour resembling one or
the other.

As it is in the case of i.i.d. environment, whenever it is the drift that determines the
asymptotic behaviour of the walk, the shape of the limit depends on the function r defined in
(3.1.1). In Section 3.2 we show how to adapt Goldsheid’s result into the setting of RWSRE.
That is, we prove that if 7(2) < 1, then the main assumption that guarantees a strong quenched
CLT for T is that E€* < co. Next we obtain the limit theorem for the position of the walk, in
the same fashion as it was done in [15].

In their paper introducing the RWSRE model, Matzavinos et al. proved annealed limit
theorems for a transient RWSRE that generalize results on RWRE described above (see |20,
Theorem 3.8]). However, one of their assumptions was that £ is bounded. More general results
were proven by Buraczewski et al. in [7, 6]. It turns out that if r(«) = 1 for some « € (0, 2],
then the key assumption under which the sequence of hitting times lies in the domain of
attraction of an a-stable law is that

E£2 < 0. (3.1.6)

In this case one may generalize the proof given by Kesten et al. and obtain an annealed limit
theorem for T', with a-stable distribution in the limit, and then deduce the annealed limit
theorems for X (see Corollary 2.4 in [7]). The limiting behaviour of the walk is determined
mostly by the drift and the presence of blocks on which the movement is symmetric has little
impact on the shape of the limit.

To describe the complementary case, in which it is the sparsity that plays the dominant
role in the limiting behaviour of the walk, the authors consider £ having regularly varying tails
with parameter —3 such that 8 € (0,4) and r(5/2) < 1. Observe that in this case, if & > 0
satisfying (3.1.2) exists, then a > /2 and (3.1.6) does not hold. In |7], the authors show that
if E£ < oo, then, under the annealed measure, the sequence of hitting times lies in the domain
of attraction of a /3/2-stable law. If E{ = oo, then the limiting distribution is more complex;
we describe it briefly in Chapter 4.

The phenomenon described above may be explained heuristically with the help of Lemma
2.3.3. Equations (2.3.8) and (2.3.10) suggest that T}, which counts the time spent by the
particle in £’th block when crossing it for the first time, should inherit tail behaviour from 5,%,
while T% , which is the duration of its excursions to the left, should have asymptotics similar
to &Wi—1. If a given by (3.1.2) exists and (3.1.6) holds, then by Kesten-Goldie theorem [4,
Theorem 2.4.4], W has regularly varying tails with index —a, while the tails of £2 are lighter.
Therefore we may expect that large Ty’s are obtained when the particle makes excursions to
the left that are long because of unfavourable drift. In the complementary case it is the tail
of €2 that is heavier, and large Tj’s occur when the particle crosses a particularly long block
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Figure 3.1.1: Exemplary trajectories of RWSRE for £ with regularly varying tails. Horizontal
lines indicate marked points; the darker the line, the stronger the drift to —oc.

for the first time.

Since the limit theorems for the hitting times under the annealed measure resemble those
already known for the i.i.d. environment whenever condition (3.1.6) is satisfied, it is natural to
expect the same similarity under the quenched measure. That is, obtaining a result analogous
to (3.1.4) should require a modification of the techniques used in [23]. Therefore in Chapter 4
we focus on the complementary case, that is we present the quenched counterpart of results
described above in the case of £ having regularly varying tails in which it is the sparsity of
the environment that drives the limiting behaviour of the walk. We prove the weak quenched
limit theorems for the sequence of hitting times and show that the strong limit theorems do
not hold. However, due to the sparsity of the environment, deducing the limit theorems for
X seems to require some additional analysis and we limit ourselves to the sequence T'.

3.2 Quenched central limit theorem for the position of the walk

In this section we show how the results and techniques concerning strong quenched limit
theorems for the first passage times and the position of the walk in a non-sparse environment
presented in [15] may be adapted into the setting of RWSRE.

Throughout this section, we assume the following;:

Ep?t® <1, E(p)**? <00, E&* < o0 for some § > 0. (3.2.1)

The first assumption is an exact analogue to the case of i.i.d. environment. The other two
guarantee that the blocks in which the walk is symmetric are not large enough to influence its
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limiting behaviour significantly.
Recall that pui = E,, Ty, is the quenched mean time the walker needs to reach .S; when start-
ing from Si_1. Note that the sequence (uy)rez is stationary under P, and so is (Var, Tk)kez-

Denote
p=Ep =ETy, o%=E][Var,Ti]
and let
n/u
b(n,w) = ———Z e — ), & =ou S?EE.

Observe that, by Corollary 2.3.2, u and ¢ are finite under assumptions (3.2.1), and b(n) is
finite for every n € N, P-almost surely.

Theorem 3.2.1. Under assumptions (3.2.1), P-almost surely,

Xn — Sb(n)

where ® is the cumulative distribution function of a standard normal variable.

3.2.1 The sequence (Ts, )nen

Let us first derive a quenched central limit theorem for the sequence (7, )nen. Since under P,
the variables T}, are independent, but not identically distributed, we will use Lindeberg-Feller
theorem.

Theorem 3.2.2. For P-almost every w,
Ts, — EuTs
ov/n

Proof. Since (Var, Tk )ren is a stationary sequence, the ergodic theorem implies that P-almost

ZE < — B Tk) iiVaerk 170 62,

k=1

—E,Ts
\/> ]]“Tk—EwTk‘>€\/ﬁ

< lim ~ ZE (Tt = EwTr)? 11, —E, T4 |>M]

n—oo N

=E[E, [(T1 — EuT1)? U, —p, 1 >M] ]

P-almost surely. Since E[Var,T1] < oo, the last expression can be made arbitrarily small by

P, i gt} T B(1). (3.2.2)

surely,

Similarly, for every ¢ > 0 and M < oo,

lim sup Z E,

n—oo

taking large M. Therefore for P-almost every w, the sequence (Ty)ren satisfies the Lindeberg-
Feller conditions under P,. ]

Remark 3.2.3. Since ® is a continuous function, the convergence (3.2.2) is uniform in ¢.
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3.2.2 The sequence (X,,)nen

To derive limit theorem for X, let us first consider X! = max{X} : k£ < n}. Then for any
jeN,
—BuTs, n—E,Ts,

- > -
ovj oV
Our aim is to find a sequence j = j(n,w,t) such that (n—E,Ts,)/0\/j — —t P-almost surely.
Note that

Ts.
P, [X} < 8j] = P,, [Ts, > n] —Pw[ 5

j
n—ByTs, =n—ju— Y (uk— p.
k=1

To eliminate the linear term, denote j(n,w,t) = n/u + h(n,w,t), then

n/u+h

n—EyTs; = —ph — Z (e — ).
k=1

Since we want the expression to tend to —t, it is natural to consider, for some constant c,

n/p

hWMﬁZdW%;EXM—W
k=1

Then ;
. n/u
jnyw,t) 1 ct 1 1
el Ly & LS )t
n pooVno onp ; Iz

P-almost surely, by the ergodic theorem. Since we want the limit of

n—EJTs,  pcty/n p B
oG ovi  oVj Z (i = 1)

k=n/u+1

n/pt+h

to be —t a.s., we should put ¢ = J,u*3/2 and show that

1 n/pt+h
7 > (e —p) =0 (3.2.3)
k=n/p+1

As was mentioned, we follow the approach presented in [15]. In particular, instead of
presenting all the details, we shall only give the essential part of the proof. Denote

H(n,w) = Z(,uj —n), H'(n,w)=maxH(s,w).

s<n
j=1 h

For p > 1, denote by || - ||, the LP norm with respect to P. It may be seen from the proofs of
Lemmas 5 and 7 in [15] that the following result is sufficient for (3.2.3):

Lemma 3.2.4. Under assumptions (3.2.1) there exists C > 0 such that

11" (n)]|2126 < CV/n.
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Proof. Recall that by (2.3.1),
i — 1= €8 + 26, Wy — BE? 4 2BCEW
and

= Ep&Z

EW = E[Z Ellko

k=—o00

therefore, for cg = E€ Ep¢ < oo,
H(n,w) = Z G—EC) + ) Z (gkgjﬂj,kfl - cor(l)k_j_1> : (3.2.4)
k=1j=—00

By Marcinkiewicz-Zygmund inequality, since the variables 5,% — E¢£? are i.i.d. with mean 0, for
some constant C1,

n n 1/2
YN (¢ -eD)|| <o) (g -E?)?
k=1 2426 =1 1448
n 1/2
( 1 52>2H1+5)
=1
/
= (e - Ee) H:;ﬁ’

and since E€*t% < oo, all the above norms are finite. This estimate together with Doob’s
maximal inequality imply that for a constant Cj,

‘ s<n

max Y _ (& — E¢?)
k=1

< 2426

I < . 2.

fj (& — E€?)

k=1

2+26 2420

To estimate the maxima of the second addend in (3.2.4), we first split the sum into blocks.
To this end, denote

B(k,1) =2 <£l~c§k—lnk—l,k—1 - 607”(1)1_1) :
and let v = 7(2 + 26)1/(2+20) By Jensen’s inequality, r(1) < v < 1. Moreover, for any [ > 0,

1Bk, Dllyy05 < 2 1€ Ek—TTk—tk-1ll9 05 + 2c0or(1)"
= 2[€lly405 [1€Plla 1257~ + 2c0r (1) (3.2.6)

< O3yt
for some constant C3. We have

Z Z 2 (fkﬁjﬂj,kﬂ - 607“(1)]“7];1) = Z B(k,1)

k=1 j<k k=1 =1
(3.2.7)

Il
NE
Y
&
=
]
]
=~
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thus
Jﬁ s n
IEEXZZB (k1) <> max Y B(k,1)+ > > |B(k,1)].
ST =1 < k=1 1>/ k=1

k=1 1=1
Denote By, (1) = Y_p_, B(k,l) and B} (l) = maxs<y, Bs(l). Then by (3.2.6) and (3.2.7),

Z 1By (1 ||2+25+C3 Z TW -

2425 I=1 I>/n

méxxi: i B(k,1)

k=11=1

It remains to give bounds on || B} (1)||242s. For fixed [, let

n—1 . % . . %1 . .
:[ = J Dt = 3B+ 230, D00 = max 3Bl 2050
j= j=

so that By (l) = 2121:1 D, (l,i). Observe that each D,(l,7) is a sum of centered, i.i.d. vari-
ables. Therefore we may, as before, use the Doob’s and Marcinkiewicz-Zygmund inequalities

to obtain, for a constant Cy,
1/2

D5 (1, 1) |y 05 < Ca || D> Bl +214,1)?
J=0 146

< (2) 1B

>1/2 ,.Ylflj

where the last inequality follows from (3.2.6). Therefore, for some constant Cs,

S GGy (21

1Br(D)lo426 < Z”D* (L) llgp05 < 05\/>’>’l .

which together with (3.2.5) gives

[H* (7)o 05 < 02\F+C5\fz\[’yl Ly osn Z v =0G/n).
I>vn

Proof of Theorem 3.2.1. Since Lemma 3.2.4 implies (3.2.3), we have

Ty, —BuTs,  n— BTy,
ov/j o3

P, [X; < Sj(wt)] =P, —1—®(—t) = ®(t).
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Recall that j(n,w,t) = b(n,w) + cty/n for ¢ = op3/?, thus

b(n)+ct\/n
(X5 < Sjnwnt = Xn <Sym+ Y. &
k=b(n)+1
b(n)+ctv/n
=S Xr =Sy < Y. (& — B+ Eétyn
k=b(n)+1
* b(n)+ct\/n
Xn - Sb(n) 1
= — & —EE) <t
Eé&y/n  cE&yn k%ﬂ( F )

We may repeat an argument used to show inequality (3.2.5) and obtain, for some C' > 0,

Since b(n)/n — 1/u a.s., we may invoke the Lemmas 5 and 7 from [15] once more to get

<Cvn.

max » (¢ — E¢)
T k=1

2426

b(n)+ctv/n
> (& -E—0

k=b(n)+1
and thus

cEé/n

Finally, it remains to show that we may replace X* with X. To this end, denote

X~ Sy
Pw[ n b()<t} s B(1).

vp =inf{k >0 : S, >n}

and observe that

Ko —Xnl cn-Txi Loy —Tx: < TVx;z.
vn vn N4 N4
Since ET% < 00, the ergodic theorem implies that Ty/ Vk — 0 P-almost surely as k — oo,

while by Proposition 2.2.4 and the law of large numbers, vxx/n — v/E{ P-almost surely.
Therefore T, ., /+/n — 0, which finishes the proof of the theorem. O

VX,;';



36:77958



Chapter 4

Weak quenched limit theorems for the
first passage times

In this chapter, we present the weak quenched limit theorems for first passage times of RWSRE
in the case of dominating sparsity. The following is an extract from [8] with alterations done
by the author to keep consistency with other chapters.

4.1 General setting

We will study the distribution of T in the weak quenched setting, which means that we will
investigate the behaviour of a sequence of random measures

Pnw(-) = Py (Tn —bn)/an € -]

for suitable choices of sequences (ay,)nen and (b, )nen, possibly depending on w. Throughout
this chapter, we will consider £ having a regularly varying tail with index — for 8 € (0,4), and
assume that Epf/2 < 1. As was remarked in Section 3.1, if 3 € [1,4) and E¢ < oo, then with
respect to the annealed probability T lies in the domain of attraction of §/2-stable law, while
for 5 < 1 one sees an interplay between the contribution of the sparse random environment
and the random movement of the process in the unmarked sites. To state this result take 1
to be a non-negative random variable with the Laplace transform

E [e—sﬁ} - coshl(\/g) s> 0. (4.1.1)

Note that 29 is equal in distribution to the exit time of the one-dimensional Brownian motion
from the interval [—1,1], see [27, Proposition I1.3.7]. Next consider a measure n on K =
[0,00]%\ {(0,0)} given via

n{(v,u) e K : u>xj orv>ux}) = xfﬁ + E[ﬁﬁﬂ]x;ﬁ/z - E[min{xfﬂ,ﬂﬁﬂx;ﬂ/z}]

for x1,29 > 0. Let N = >, 0, 5,) be a Poisson point process on [0,00) x K with intensity
LEB ® n, where LEB stands for the one-dimensional Lebesgue measure. Under mild integ-

25
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rability assumptions, see [6, Lemma 6.4|, the integral

L) = (La(0). La(®) = [ jN(@sdj) ¢ 0
[0,t]xK
converges and defines a two-dimensional non-stable Lévy process with Lévy measure n. Next
consider the S-inverse subordinator

LT (t) =inf{s >0 : Ly(s) > t}, t>0.

Finally, if 8 € (0,1), then under some additional mild integrability assumptions [6, Theorem
21], with respect to the annealed probability,

T, /n? = 2Lo(Li (1)) + 20(1 — Li(LE (1)) (4.1.2)

Our goal is to present quenched version of these results. As we will see in our main theorem,
the terms Lo(Li (1)—) and Li (L (1—)) present in (4.1.2) can be viewed as the contribution
of the environment, whereas ¥ reflects the contribution of the movement of the random walker

in the unmarked sites that are close to n.

The chapter is organised as follows: in Section 4.2 we give a precise description of our
set-up and main results. In Section 4.3 we provide a preliminary analysis of the environment.
The essential parts of the proof of our main results are in Sections 4.4 and 4.5, where we prove
weak quenched limits and the absence of the strong quenched limit, respectively.

4.2 Weak quenched limit theorems
In this section we will present our main results. We assume that
P¢ > t] ~ tPU(t) (4.2.1)

for some § € (0,4) and slowly varying ¢. We will focus on the case in which the asymptotic of
the system is not determined solely by the drifts at marked sites and thus we will also assume
that

E[p*] <1, E[¢¥p"] < oo, E[¢%7p?] < oo, for some v > (/4. (4.2.2)

Without loss of generality we will assume that v < min{1, 3/2}, in particular E£?' < oo.
As we will see later, the first condition in (4.2.2) guarantees that a significant part of the
fluctuations of T}, comes from the time that the process spends in the unmarked sites. The
next conditions are purely technical. Note that we do not assume that there exists o > 0 for
which (3.1.2) holds, however if it does exist, then necessarily 2a > f.

As it is the case for annealed limit theorem, one needs to distinguish between a moderately
(E¢ < 00) and strongly (E€ = oo) sparse random environment.
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To describe the former take (¢;);en to be a sequence of i.i.d. copies of ¢ distributed
according to (4.1.1) and let G : M,((0,00)) — M;(R) be given via

(4.2.3)

GO0 = {P[Zi>1xi(2§i—1) e -], iff2*(dz) < oo,

do(+) otherwise,

for ¢ = > ;- 0z;, where (z;);>1 is an arbitrary enumeration of the points and the probability
is taken with respect to (¥;);jen. Take (an)nen to be any non-decreasing sequence of positive
real numbers such that

nP[¢ > ap] — 1.

Then, since the tail of £ is assumed to be regularly varying, the sequence (an)nen is also
regularly varying with index 1/5. That is for some slowly varying function /1,

an = n'Pl1(n).
The sequence (ay)nen Will play the role of the scaling factor in our results.

Theorem 4.2.1. Assume (2.2.6), (4.2.1) and (4.2.2). If E{ < oo, then
Pw [(Tn - Ean)/ai € ] = G(N)()
in Mi(R), where N is a Poisson point process on (0,00) with intensity fa—2/>~ dx /2EE.

Before we introduce the notation necessary to formulate our results in the strongly sparse
random environment, we will first treat the critical case which is relatively simple to state.
Denote

mp =nE[{ Le<q,] -

Note that by Karamata’s theorem [3, Theorem 1.5.11] the sequence (mj,)nen is regularly
varying with index 1/8. Furthermore a, = o(m,) if § = 1 and a, ~ (1 — B)m,, if 5 < 1.
Next let (¢p)nen be the asymptotic inverse of (my,)nen, i.€. any increasing sequence of natural
numbers such that

lim ¢ n= lim m. /n=1.
n—o0 m”/ n—o00 c"/

By the properties of an asymptotic inversion of regularly varying sequences [3, Theorem 1.5.12],
¢, is well defined up to asymptotic equivalence and is regularly varying with index §. Finally,
by the properties of the composition of regularly varying sequences, (a, )nen is regularly
varying with index 1 and a., = o(n) if § = 1.

Theorem 4.2.2. Assume (2.2.6), (4.2.1) and (4.2.2). If E{ =00 and B =1, then
P, [(Tn — EuTp)/a?, € -] = G(N)()

in Mi(R), where N is a Poisson point process on (0,00) with intensity x=3/2dx/2.
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The limiting random measures in Theorems 4.2.1 and 4.2.2 share some of the properties
of their counterpart in the case of i.i.d. environment |23, Remark 1.5|. Namely, using the
superposition and scaling properties of Poisson point processes, one can directly show that
for each n € N and G,G1,...,G, being i.i.d. copies of the limit random measure G(N) in
Theorem 4.2.1 or Theorem 4.2.2,

G1# Gk ... % Gn(-) L G(-/n¥P). (4.2.4)

The statement of our results in the strongly sparse case needs some additional notation.
As it is the case for the annealed results, it is most convenient to work in the framework
of non-decreasing cadlag functions rather than point processes. Denote by D! the class of
non-decreasing cadlag functions R, — R, and for h € D' consider

Y (h) =sup{h(t) : t € Ry, h(t) < 1}. (4.2.5)

Note that if h(t) = 1 for some ¢, then necessarily Y(kh) = 1. For h € D' denote by
(xg(h), tr(h))ken an arbitrary enumeration of jumps of h, that is tx = tx(h) € Ry for k € N are
all points on the non-negative half-line such that h has a (left) discontinuity with jump of size
z(h) = h(tx) —h(t;) > 0at t;. Note that the random series 3 ;. 1, 1<1 z1(h)?(209;, —1) is con-
vergent since it has an expected value bounded by h(1)E[29 — 1|. Finally let F': DT — M, (R)
be given by

F(h)()=P [(1=T(W))*2% —1)+ > a(h)?*20—1)€
k:h(ts)<1

Theorem 4.2.3. Assume (2.2.6), (4.2.1) and (4.2.2). If B € (0,1), then

)
P, [(Tn — E.T,)/n* € -] =
in M1(R), where L is a (3-stable Lévy subordinator with Lévy measure v(x,+00) = 27,

Interestingly the limit measure F'(L) does not enjoy a self-similarity property in the sense
of (4.2.4). Namely, for any a,b € R, b > 0 the laws of

Fy « F5(-) and F((-—a)/b)

are different, where F, F} and F; are independent copies of the limiting random measure F'(L)
in Theorem 4.2.3.

Finally, we prove that the weak convergence stated above cannot be improved to conver-
gence in distribution. Therefore, as in the case of i.i.d. environment, the asymptotic quenched
behaviour of T' ought to be expressed in terms of weak quenched convergence. To keep the
proof relatively short, we omit the boundary case of 8 = 1, E{ = oco.

Theorem 4.2.4. Assume (2.2.6), (4.2.1), and (4.2.2) and consider

{ai it E§ < oo,
Kp =

(4.2.6)
n? if E€ = oo and 3 < 1.



4.3. Auxiliary results 29

Then P-a.s. the sequence of probability distributions
P,[(T, — EuT,)/kn € -] (4.2.7)

has no limit in the Prokhorov metric.

4.3 Auxiliary results

We will now present a few lemmas that we will use in our proofs. We will discuss the asymptotic
behaviour of the hitting times (2.2.4). It will allow us to understand the process X better and
indicate its ingredients which play an essential role in the proof of our main results. We will
first analyse the hitting times T along the marked sites .S, that is

Ts, = inf{n: X, = Sk}, k>1.

k

Recall T7, T! defined by (2.3.7) and (2.3.6). They give rise to the following decomposition
that will be used repeatedly:

In Lemma 2.3.3, we calculated the quenched expected value and quenched variance of T}, Ti.
Below we prove that after hitting any chosen site S, the consecutive excursions to the left are
negligible. This entails that behaviour of Ts, is determined mainly by T .

4.3.1 The sequence (7% )nen

Recall that, under P, T} equals in distribution to the time it takes a simple symmetric
random walk on [0, {x] with a reflecting barrier placed in 0 to reach & for the first time when
starting from 0. Let (Y},)nen be a simple symmetric random walk on Z independent of the
environment w. Define

U, =inf{m : |Y,,| = n}, (4.3.1)

i.e. Uy, is the first time the reflected random walk hits n. Then for every k& > 0, for fixed
environment w, T} 4 U, . In what follows we investigate how the asymptotic properties of
affect those of T}. To do that, we will utilize the aforementioned equality in distribution and
hence we first need to describe the asymptotic properties of U, as n tends to infinity. The
proof of the next lemma is omitted, since it follows from a standard application of Doob’s
optimal stopping theorem to martingales Y,2 —n, Y,* —6nY,2 +3n2 +2n, Y,0 — 15nY,* + (45n2 +
30n)Y,2 — (15n3 + 30n? + 16n), and exp{=+tY;, }cosh(t)~".

Lemma 4.3.1. Let Uy, for n € N, be given in (4.3.1). We have

EU, =n? EU?=5n"/3 —2n%/3.
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Moreover, as n — 00,

Un/n? = 20,

for ¥ defined in (4.1.1). Furthermore the family of random variables {n=*U?2},en is uniformly

integrable.

The sequence Tg = > 5y T} is a sum of P,-independent random variables. Since, by
Lemma 4.3.1,

2, 2
Varw k= gf}% - ggg, (432)

in our setting the variance Var,Tg behaves asymptotically as (2/3) S k1 &), thus obeys
a stable limit theorem [14, Theorem 3.8.2]. Moreover, we can use precise large deviation
results for sums of i.i.d. regularly varying random variables [10, Theorem 9.1| to describe the
deviations of Var,Tg¢ . That is for any sequence (e )nen that tends to infinity,

P[Var,T§ > anap) ~ (2/3)% 4o, Bt Po(al 4ay,).

We can now use Potter bounds [3, Theorem 1.5.6] to control E(a,lq/ Ya,) with £(a,). This in
turn yields a large deviation result asymptotic on the logarithmic scale. We summarize this
discussion in the following lemma.

Corollary 4.3.2. The sequence (Var,T% [ah)nen converges in distribution (with respect to P)
to some stable random variable. Moreover for any sequence (o, )nen that tends to infinity,

log P[Var,T§ > anap] ~ —Blog(an)/4.

4.3.2 The sequence (T} )uen

Recall the formulae for quenched mean and variance of variables ng given in Lemma 2.3.3.
The next lemma implies that in our setting, the left excursions of the process are negligible.

Lemma 4.3.3. For everye >0 and 6 > 0,
P[Vaerén > 877,9&%} <o(1)/n?, n = oo,

where v is a parameter satisfying (4.2.2). In particular,

1

—4Vaerfgn 5.

an

Proof. To prove the lemma one needs to deal with the formula for the variance (2.3.11). To
avoid long and tedious arguments we will explain how to estimate two of the terms, i.e. we

will prove

n
F [ka Y W g Wi = en’an | <o(1)/n™, n— oo (4.3.3)
k=1  j<k—1



4.4. Proofs of the weak quenched limit theorems 31

and
[ka Z I g 1€j+1 ] <0(1)/n9’7, n — oo. (4.3.4)
j<k—1

All the remaining terms can be treated using exactly the same arguments.
Recall that v € (8/4,1) and Ep?’ < 1. The Markov inequality, subadditivity of the
function  +— 27, and independence of &, IL; 12 r_1, pj+1&+1 and W; yield

[Z‘sz Z M1 k- 15;+1W2 } gvnﬁa‘” |:Z£k: Z ILif e 1§y+1W

j<k—1 j<k—1
1 2 Cn o(1)
7§ E¢ - Y EII E[p) &) JEWT < =
~X ~X
0y 47 k JH+2,k—171WFj+155+1 J 0 Ay 0y’
eYay, k=1 j<k—1 e Yay, n

where the last inequality follows from our hypotheses (4.2.2) and Lemma 2.2.1. This proves
(4.3.3). We proceed similarly with the second formula (4.3.4):

|:Z£k: > Mjppaél > ] [Zﬁk > My 15}

i<k—1 j<k—1

Cn o(1)
P ZEgk Z EHJ+2k 1 [p]+1£ 1] < Iy = nfr -’

Ynby
k=1 j<k—1 gm=tan

577197 an

Invoking the first part of the lemma with § = 0 we conclude convergence of Var,T f% JaZ
to 0 in probability. O

4.4 Proofs of the weak quenched limit theorems

In this section we present a complete proof of our main results. We will begin by present-
ing a suitable coupling. Then we will treat the moderately sparse and strongly sparse case

separately.

4.4.1 Coupling

In the first step we will prove our result along the marked sites. That is we analyse
Snw() = Pu [ay? (Ts, —EuTs,) € -]. (4.4.1)

The main part of the argument concentrates on the limit law of Tg = > w1 Th. Recall U,
defined in (4.3.1), which is the first time the reflected random walk hits n. For every k£ > 0 and

for fixed environment w it holds that T}, 4 Ug, . By the merit of Lemma 4.3.1 and Skorokhod’s

representation theorem we may assume that our space holds random variables Uflk) and I
such that:

. {U,(Lk)}n, Jy, for k € N are independent copies of {Up, }n, ¥
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o {Uék),ﬁk :n,k € N} and {& : k € N} are independent;
. Uflk)/n2 — 20y in L? as n — oo;

e for all w, Ug(,lj) and T}, have the same distribution under P,,.

Observe that the convergence in L? is secured by the convergence in distribution and uniform
integrability provided in Lemma 4.3.1.
To simplify the notation we will write Ug, instead of Ug(,l:)-

Proposition 4.4.1. Assume (4.2.1). Then as n — oo,

—4
a, Var,

TS, BTG, — > 62(20, — 1)] Bo.

Proof. First, note that

n

n
TS, — EuT, — > (20, —1)| £ Var,

k=1

Var,,

(6 - 26i0)|-

k=1

Fore>0let Il = {k<n:& >eca,}and I2 = {k <n:& < ea,}. Then for any 6 > 0,

P | Var, Z (Ue, — 25,31%)] > dak| <
k=1
P> giVar, |5 — 20 2 +P | D GVar, |3 - 20 % (4.4.2)
Lk Valy k 2 Lk Valy k 9 . .
kell kel2?

Since U}Lk),ﬁk are independent copies of U, such that U, /n? — 9 in L?, there exists M > 0
such that

U,
Var,, [;k - 21%] <M forall k,w,
k

and, for N € N large enough,
(k)

Varw W

— 229k] <e forall k,w.

We can hence estimate, for n sufficiently large,

P> ¢hvar, [ — 29 } b | [Zk LN 5] .

2 a 2¢e
kell

Since the sequence Y ), & /ap converges weakly (under P) to some §/4-stable variable Ly 4,
the probability on the right hand side above converges to P[Lg,, > §/(2¢)]. To estimate the
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second term in (4.4.2), note that

U Sal
Py ¢ivar, [5; —219k] > %l < p
kel? i 2

n
Sal
4
;é'k’ lfk<5a7L > 2]\9’]

2M
<5 a'E

n
2M

Zf]% ]]‘fkgaan] = Tnan4E [54 ﬂ§<aan] :

k=1

By the Fubini theorem, we have
Ean
E [¢* Teceq,] < / 4PP[¢ > t]dt
0

and the Karamata theorem [3, Theorem 1.5.11] entails that the expression on the right is
asymptotically equivalent to 4e*aP[¢ > ca,] ~ 4e*Pn~lal. Finally, we can conclude that

for any £,6 > 0,

S U
lim sup P [Z 4 Var,, [;2'“ - ﬁk] > dal
" k=1 k

8M ,_ 5
< 76 B—FP [L5/4> 2€:|

and passing with € to 0 we conclude the desired result. O

We are now ready to determine the weak limit of the sequence ¢, (w) = ¢n given by
(4.4.1). Recall the map G defined in (4.2.3).

Lemma 4.4.2. The map G is measurable.

Remark 4.4.3. The proof of Lemma 4.4.2 is identical to that of Lemma 1.2 in [23] and therefore
will be omitted. Part of the proof is showing that the map

Goy: 2 =) ($k)keN — P [Zxk(219k — 1) S ] € Ml(R)
k=1

is continuous.
Theorem 4.4.4. Assume (4.2.1) and (4.2.2). Then
¢n = G(Noo)
in M1(R), where Ny, is a Poisson point process with intensity 5:5—5/2—1(19;/2.
In the proof of this result we will use the following lemma.

Lemma 4.4.5 ([23, Remark 3.4]). Let 6, be a sequence of random probability measures on R>
defined on the same probability space. Let v, and v, denote the marginals of 6,,. Suppose that

Eo (X -Y)50 and Varg, (X —Y) 50,

where X an'Y are the coordinate variables in R%. If v, = vy, then v, = 7.
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Proof of Theorem 4.4.4. First, observe that the sequence of random point measures IV,
>y 552&52 converges weakly to No,. Indeed, this follows by an appeal to [25, Proposition
3.21] and checking that

nP[¢?/a;, € -] = p(-) vaguely on (0,00],

where p(dz) = fz=P/2~1dz /2.
Since G is not continuous, we cannot simply apply the continuous mapping theorem and,
similarly as in [23], we are forced to follow a more tedious argument. Define

G ./\/lp 0 OO Z(Smk — P Zxk 279]@ xk>s SRR IS Ml(R)'

Then for any € > 0 the map G is continuous on the set M;, := {¢ € M, : (({&,00}) = 0};
indeed, take (,,( € M, such that ¢, — ¢ vaguely. Then, by [25, Proposition 3.13|, since the
set [e, 00] is compact in (0, 0o], there exists p. < oo and an enumeration of points of ¢ and ¢,
(for n sufficiently large) such that

De
G- Zaxk, (-Nle,oa]) =D bay
k=1

and
(z1,..., 7 ) = (z1,...,7p,) asn — 0.
Therefore
Pe Pe
=P [Z (20 — 1) € ] =P [Z rr (20, —1) € - | = G(Q)().
k=1 k=1
By [2, Theorem 3.2|, to prove that G(N,) = G(N) it is enough to show
Ge(Ny) =1 G-(Noo) for all e > 0, (4.4.3)
G.(N) . GINw). (1.4.4)
lim limsup P [p(G:(N,,), G(N,, )) >4l =0 for all § > 0, (4.4.5)

e=0 pooo

where p is the Prokhorov metric on Mj(R).

First, for any € > 0, Noo € M, almost surely. Thus (4.4.3) is satisfied by the continuous
mapping theorem since G, is continuous.

For any sequence & = (zx)ken € €2 and € > 0 define ° € ¢ by 2§ = zj 15, >.. By the
dominated convergence theorem, x° — x in ¢? as ¢ — 0. Hence, since the map G5 defined
in Remark 4.4.3 is continuous, also Ga(x®) = G2(x). This means that for any point process
¢ =340z, such that = € (2,

G=(¢) = Ga(x°) = Ga(z) = G((),

which gives (4.4.4).
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Recall that if Lx, Ly are laws of random variables X,Y defined on the same probability
space, then p(Lx,Ly)? < E|X —Y|? (c.f. [13, Theorem 11.3.5]). Thus

2

n
a;Q Zéz ﬂ{igsa% (20, —1)| > 53

k=1

P [p(G<(Nn), G(Nn)) > 6] <P | Ey

n
=P [E@201 —1)%a," Y &G loc,e > 6
L k=1

)

since (29 — 1) is a sequence of mean 0 i.i.d. variables independent of the environment. Denote

C = E(209; — 1)2, then

n 3
limsup P [p(G:(N,,), G(N,,)) > 4] < limsupP [a;4 Zﬁﬁ Te2ceaz > s

C
n—oo n—oo k=1

C
< — limsupa, ‘nE {54 ]].&'ggl/2ani| .

~
53 n—oo

As we have seen in the proof of Proposition 4.4.1, the expected value present above is domin-
ated by an expression asymptotically equivalent to 4e2~#/ 2n=ta?, thus

. 4C oH_
limsup P [o(G(No), GN,) > 8] < 202
n—o0
which proves (4.4.5).
Therefore G(N,,) = G(Ns). Now the claim of the theorem follows from Proposition 4.4.1
and Lemmas 4.4.5 and 4.3.3. O

4.4.2 Moderately sparse random environment

Proof of Theorem 4.2.1. Let p,,, denote the quenched law of (7}, — E,T))/a?.

Since E¢ < oo, x = (E€)™! is well defined. Let Noo = Y, 5, be a Poisson point process
as in Theorem 4.4.4 and let N& = > 0,2/84,- Then NX is a Poisson point process with
intensity Bxxz—?/2-1dz/2. Putting

¢X (W) () = ¢ () = Py [a,*(Ts,,, —EuTs,,) € -]
=P, [(axn/an)zagg(Tsxn - E,Ts,,) € ] ,

where Sy, = S|y,), it follows from Lemma 4.4.5, Theorem 4.4.4, and the convergence
Ayn/an — x'/8 that ¢f = G(NX).
It remains to show that

P

a,*Var, [(Ts,, — EuTs,,) — (T, — EuT,)] = a,*Var, [Ts,, — Tn] = 0,

xn

from which it follows, by Lemma 4.4.5, that u, = G(N%).
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Observe that on the event {n < Sy, }, for any k such that S <n

SX" an
Vary, [Ts,, —To) = Y Var, [Tj —Tj4] < Y Var, [T} — Tj]
Jj=n+1 Jj=Sk+1

= Var,, [TSX" - Tgk]
and similarly on {S,,, < n} for any k such that S > n
Var,, [Ts,, — T, < Var, [Ts, — Ts,,] -
Therefore for any § > 0 and € > 0,
P [a,*Var, [Ts, , — T,] > 6] < P[|Syn — n| > en]
+ P a4y Vary [Ts, 1y — To| > )
+P { 2Var [To, = Ts o] > 9]

1
Xn X X

The first term tends to 0 by the law of large numbers (recall 1/x = E£). To estimate the
second, note that by Schwartz inequality,

Var,, [Ts., | = Var, |:Ttéen + Tgm] < 2Var,, [T éin} + 2Var,, [Tgm] .

By (4.3.2),

En

Var,, [T5,, | ZVarw k= Z ;(fé — &) < Zfl?n
k=1

k=1
and furthermore a;4 oy 5,% = e /ﬂL5/4 with respect to P, while by Lemma 4.3.3 we have
a,, *Var,, [ngsn] 5 0. Therefore

0
lim sup P [a;4Varw [Ts.,] > 6] <P [L5/4 > 4/,6’]
n—oo

The last expression can be made arbitrary small by taking sufficiently small €. O

4.4.3 Strong sparsity: preliminaries

From now on we assume that E£ = oo. This case is technically more involved, however the
underlying principle remains the same. Denote the first passage time of S via

vp =1inf{k >0 : S, > n}.

Recall that we write

my = nE[§ lecq,]
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and we denote by (¢,)nen the asymptotic inverse of (my,)nen, i.e. any increasing sequence of
real numbers such that

lim ¢, /n = hm Mme, /1 = 1.
n—00

Let
d, = 1/P[ > n].

Lemma 4.4.6. Assume (4.2.1). Under the introduced notation aq, /n — 1.

Proof. Since the sequence (ay)nen is asymptotically unique, we can take
ap = inf{z : P[{ > 2] <1/n}.

Then
agq, = inf{z : P[{¢ > z] < P[¢ > n]}.

In particular n > ag4,. By the merit of regular variation of P[¢ > x| we have that for any
e >0, P[§¢ > (1 —e)n] > P[¢ > n] for sufficiently large n. This secures a4, > (1 —¢)n for
sufficiently large n and thus concludes the proof since € > 0 is arbitrarily small. O

From the above lemma, by regular variation of a,, we have that acq, ~ CY/Pp for any
constant C' > 0.

As one may expect, S, grows at a scale m,, and thus v, must grow at a scale ¢, (in the
sense of a limit theorem which we will soon make precise). For our purposes we need to justify
that S,,/m,, and v, /¢, converge jointly with some other characteristics of the trajectory of S.
For this reason we will need to use the setting of cadlag functions. Recall that DT stands for
the space of non-decreasing right continuous functions that have a left limit at each point. For
h € D' we define h* € D via

R (t) = inf{s : h(s) > t}.

Consider M = M,,((0,00] x [0,00)). Let M: D — M be given via

= Zéxk ®5tk7
k

where for h € DT, {t;},en are the discontinuity points of h and xj, = h(t;) — h(t; ) is the size
of the jump at tg.

Lemma 4.4.7. The function M: DT — M is continuous with respect to Jy topology.

Proof. Let f,, f € D' be such that f,, — f in J; topology. For any nonnegative, continuous
function ¢: (0, +o0] x [0, +00) — R with compact support we can find € > 0 and 7' > 0 such
that ¢(z,t) = 0if x < e ort > T. Since f € D', it has only finitely many jumps on the
interval [0, 7] that are greater than e, therefore

N
/ (x,t) M f(dz, dt) :Zgo Tg, tk)
k=1
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for some N, t1 < -+ <ty <T and zp > ¢.
By the definition of .J; topology, there exists a sequence of continuous increasing functions
An : (0,00) = (0,00) such that

sup |Ap(t) —t| =0, sup |fu(t) — f(Anu(2))] — 0. (4.4.6)
te[0,T] t€[0,T]
For n sufficiently large, sup;cjo 71 [An(t) —¢| < T —tn, which means that f o\, has exactly N
jumps on the interval [0, T), at times A, !(¢;). Moreover, for large enough n, suptefo,r] | fn(t) —
F(An(t))] < €/3, from which it follows that f, cannot have jumps bigger than e apart from
the discontinuity points of f o A,.
Fix k € {1,... N}. It follows from (4.4.6) that for n large enough f,, does have a jump at
M- Y(t), denote it by x}, and observe that ]! — x as n — oo; in particular z} > ¢ for large
n. It also follows that A, '(¢;) — t as n — oo. This means that for n sufficiently large

N
/ (xz,t) M fp(dex,dt) :Zcpxk, “(tr))
k=1

and the last expression tends to [ ¢(z,t) M f(dz,dt) as n — oo, which gives M f, = M f. O

Consider a random element of M given by

A, = Z(sgj/an ® 6;/n

j=1
and random elements of D' defined via
Ly (t) = Sjney/an for <1 and L(t) = Sint) /My for g =1. (4.4.7)
Recall T: D' — R defined in (4.2.5).
Lemma 4.4.8. If 3 < 1, then
<Ln,An,CVl”, S”n—1> = (L, M(L), L (1), Y(L)) (4.4.8)

in (D, J1) X M xR xR, where L = (L)1>0 is a strictly increasing (3-stable subordinator with
Lévy measure given by v(z,+00) = z P,
If 6 =1, then

@ﬁﬂ%ﬂyﬂ@m) (4.4.9)

c, n

in (D, J1) x R xR, where id: Ry — Ry is the identity function.

Proof. Consider first 5 < 1. By an appeal to standard functional weak convergence to stable
Lévy motion [26, Corollary 7.1],

Ly=L in(D,J).
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Note that
A, = M(Ly)

and the function M is Ji-continuous by Lemma 4.4.7. Moreover,

129 n
2oL =
dn dn < adn >

and the map h +— h* is continuous in M; topology by [30]. In what follows, we will use
notation introduced in [29]. For h € D let A~ be the lerl (left-continuous, having right-hands
limits) version of h, that is, h™(t) = lim._,o+ h(t — ) and A~ (0) = 0. Similarly, let A" denote
rcll version of a lerl path. Let ® : DT — D be given by

®(h) = (h~ o (hT))™ .

Finally, observe that for any k € N, ®(Lg, ) on the set [Si/aq,,Sk+1/aq,) is constant and

St —a ) ().

aq ad,,

equal to Si/ag, , therefore

n

By [29], ® is Ji-continuous on D C D, the set of strictly increasing, unbounded functions.
Since L € D' almost surely, by the continuous mapping theorem we have joint convergence
in distribution

(Lp, M(Ly), Ly, ®(Ly,)) — (L, M(L), L, ®(L))

in (D, J1) x Mp((0,00] x [0,00)) x (D, M;) x (D, J1). By Skorokhod’s representation theorem
we may assume that the above convergence holds almost surely.
Since the limiting processes admit no fixed discontinuities, Proposition 2.4 in [29] gives
Vn

i L“(1) and Sa”’;l — ®(L)(1) = T(L)

n

almost surely.
The case § = 1 is similar and follows from the fact that by [26, Corollary 7.1] and properties
of J1 topology,

L, =id in (D,.Jy).

One can combine this with

~ S, ~
(), e (2)
Cn Mme, Mme, Mme,
and the arguments presented in the case 8 < 1 to get the desired claim. ]

Remark 4.4.9. Observe that all information on the sequence () is carried by the process A,
and therefore by L, or, equivalently, L,,. We may thus assume that our space holds random

)

Lemma 4.4.8 holds almost surely.

variables UT(Lk , U1 as described in Section 4.4.1 and at the same time the convergence given in
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Lemma 4.4.10. Assume that (4.2.1) holds true. If f < 1, then

n_4Varw

vn—1
T T P
Ty, , —BJTS, | — Z £2(20 — 1)] 50
If 6 =1 and E¢ = oo, then

—4
a,, Var,

vn—1
P
Th,  —BuT, = > &0, - 1)] =0

Proof. One can use the same arguments as in the proof of Proposition 4.4.1. First consider
B € (0,1). By tightness of {v,,/dy }neny Wwe can choose C' > 0 to make the probability P[v, >
Cd,) arbitrarily small. Next, on the event {1, < Cd,},

vn—1

Var, |T5, , —EJT5, = > &20 —1)| < Var,

Cd,
3 (U - 25;31%)] |

k=1

From here, since acg, ~ CYPn, one argues as in the proof of Proposition 4.4.1 to show that
& Ue, & Ue,

Z >k Var,, §2 — 29, and Z >k Var,, 52 — 29

kell k;eI?

where I! = {k < Cd, : & > en}, I2 = {k < Cd,, : & < en} with fixed ¢ > 0. In the
case =1 and E£ = oo one can invoke the same arguments combined with the tightness of

{vn/cn}nen. ]

Lemma 4.4.11. Assume that (4.2.1) holds true. If 8 € (0,1), then
n*4Vaer§Vn 5o.

If 6 =1 and E£ = oo, then
ac_fVaeréUn 5o.
Proof. Consider the case g < 1. Take any C' > 0 and write

P tVar T4, > 2| <Plun > Cdo] + P [VaruTh > enf].

Since acg, ~ CY/Bpn, an appeal to Lemma 4.3.3 shows that the second term tends to 0 as
n — oo. The first term can be made arbitrarily small by taking C' > 0 sufficiently large. In
the case 8 = 1 we can use an analogous argument with d,, replaced with c,. O

For the purpose of the next lemma. let ({U},en, o) be, as before, a copy of ({U, }nen, )
given by the claim of Lemma 4.3.1 independent of the environment.

Lemma 4.4.12. Assume that (4.2.1) and (4.2.2) hold true for f <1 and E¢ = oco. Then
U Sy 1 — Bu Ud o

n—

vl (1 - 2)2(20) — 1) 50,

n2

where 2= TY(L) for 3 <1 and 2=1 for f =1.
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Proof. By the merit of Remark 4.4.9, S, _1/n — Z, P-almost surely. Secondly, by a standard
application of the key renewal theorem [14, Theorem 2.6.12], the condition E§ = oo implies

that n — 5,1 E> o0. The claim of the lemma follows from the fact that

S, 1\? _ S, 1\? Uls, _ _

and Lemma 4.3.1. O]

4.4.4 Strong sparsity: =1

We will now focus on the case when 8 = 1 and E§ = oo. By Lemmas 4.4.5, 4.4.10, 4.4.11,
and 4.4.12, it is sufficient to study the quenched behaviour of » ;" ! (295, — 1).

Proof of Theorem 4.2.2. Fix e > 0. On the set {|v, — cn| < e}y

2 2

VUn 2
Z @29, -1)] < max Z 20, —1)] =% max (Z E2(20y, — 1) )

o1 m:lm—cn|<ecn ket 1
and by Doob’s maximal inequality,
ECn 2 ECn
Py | max <Z§k (20, — 1) ) >4 <6'E, (Z (29, — 1)) =6 'E(29 — ng

k=1

Observe that

ECn ECn

a;!Y Gi=e'(l+o(1)) &/az,.
k=1 k=1

Since the sequence on the right hand side is tight in n, it follows that
Un 2 p
angw( > G20 - 1)) = 0.
k=cn+1

In a similar fashion,

Cn 2
acwa( 3 gg(zﬁk—1)> Lo

k=v,+1

Therefore the weak limit of the quenched law of (T}, — E,T},)/a? will coincide with the limit

of
P, [Z&%(wk —1)/a?, € ] :
k=1

The weak limit of the latter is G(IV), which follows from the proof of Theorem 4.2.1. O
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4.4.5 Strong sparsity: <1

Proof of Theorem 4.2.5. Let pu, ., denote the quenched law of (T}, — E,T,,)/n?. Then

vp—1 anl]

Tn - TSVn,1 - Ew[Tn - TS,,nfl] + TS - Ew[TS

Mn,w(') = Pw nZ 2 c -

To treat the second term under the probability we can, similarly as previously, decouple the
times that the random walker spends between consecutive Si’s for k < n. The first part will
be controlled with the help of Lemma 4.4.12. Let ({U2}, %) be, as before, a copy of ({U,}, )
given by the claim of Lemma 4.3.1 independent of the environment. Then US_ Su 1 has, under
P, the same distribution as the time the walk spends in [S,, —1,n) after reaching S,, 1 and
before reaching n. By Lemma 4.4.11 and Lemma 4.4.5 the weak limit of p,, is the same as

that of o
s T
U —Sup—1 — By U —Sup—1 + TSun71 _EW[TSunfl] c ] '

Ian,w(') - Pw

n? n?

Recall the random functions L,, given in (4.4.7) and that for a cadlag function h we denote
by (zx(h),tx(h))r an arbitrary enumeration of its discontinuities, i.e. xy(h) = h(ty) — h(t; ) >
0, where tx(h) = t5. Note that, with T given in (4.2.5), one has by the merit of Lem-
mas 4.4.5, 4.4.10, 4.4.11, and 4.4.12 that the limit of fi, , will coincide with the limit of

n a?ln
F () =Py, ﬁ(l — T(Ldn)) (2190 — 1 Za:k Ld 219k — 1) ﬂLd (tr)<n/ag, € - |.

It is enough to show that F™ = F(L). To achieve that one uses the same approach as in the
proof of Theorem 4.4.4. Namely by considering, for € > 0,

B2 () = Py | 2 (1 = T(La,))2(200 — 1)
+ 725% Lg,)? (29, — 1)1 i (La,)>e LLa, (tn)<n/aq, € }
For fixed € > 0, F' = F>°, where

Fgoo() =P, (1 — T( ) 2190 — 1 ka Qﬁk ) w(L)>e ﬂL(tk)gl c -

since associated point processes converge and a4, /n — 1. Then we show that F2° = F(L) as
¢ — 0. We finally prove that (4.4.5) also holds in this context, since

n—00 n—00 Cs3ad

. 53nt
limsup P [p(F, F") > ¢] < limsup P Zl‘k Lg,) 11, (t)<n/aq, > 4]
k n

and the last expression tends to 0 as ¢ — 0, because n/ag4, — 1 and Lg, — L a.s. in Jj.
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4.5 Absence of a strong limit

4.5.1 An auxiliary process X and scheme of the proof

Our aim now is to prove Theorem 4.2.4 stating that the strong limit in distribution does not
exist, that is for ,, given in (4.2.6) and for P-a.e. w there is no random variable Y,, such that

Tn - Ew Tn

=Y, n — 0o. (4.5.1)
Rn

Before going into the details of the proof, let us explain its scheme. We will prove that there
is a subset 2y C Q of measure 1 such that for every w € €2y one can find an infinite subsequence
of integers (km)men (depending on w) for which the values of & 1 are exceptionally large.
The time Ts, ., —Ts,
bigger or comparable with T, ~and must affect the limit Y,,. As a consequence, the random

_ that the walk needs to move from S, to Sk,,+1 is then either much

variable Y, satisfies distributional equations which do not have any nontrivial solutions (see
(4.5.19) and (4.5.20) below); this leads to the absence of the strong quenched limit.

Although the general idea is relatively easy to explain, since we have to deal with a.e. w,
the details are quite tedious. We start below with a general construction and then pass to
a detailed proof for the case 8 < 1, keeping general notation for as long as possible. Finally
we will study the other case.

For technical reasons, instead of the process X we need to consider a slightly different
process X = (X )ren, whose trajectory contains independent pieces. We start by construct-
ing a favourable environment of probability one. For this purpose consider two increasing
sequences (Pp)neN, (Gn)nen diverging to +o0o and satisfying

2pn < Gn < Pn+1/2, DPn/qn — 0, and ;2‘;" > n? (4.5.2)
for some § > 1/3. Notice that one may take e.g. p, = 22", ¢, = pnr1/4.

The trajectory of the random walk X cannot be divided into independent pieces with
respect to P, because the process can have large excursions to the left and the environment
is not homogeneous. To remedy that we will censor the left excursions of X that become too
large. We introduce a new process X = (Xj)ren. This process essentially behaves as the
previous one and evolves in the same environment, with a small difference. Namely after X
reaches Sy, and before it reaches So,,, we put a barrier at point Sp,,, i.e. the process cannot
come back below S,,,. However, this barrier is removed when X hits Sy, . Of course we can
couple both processes on the same probability space by removing from X all left excursions
from S}, that occur after hitting S;, and before reaching Sz, .

For any k, we define the random variables T}, T, Tz, TL in an obvious way, e.g.

Tk = 1nf{] : Y] = k}, Tk = T,S'k - Tsk_1'
Then T), = T}, for every k and Tig =T for k ¢ U,,(qn, 2gn). Note that for k € (qn, 2gy], Tx— Tk
is the time that the process X spends below S, after hitting S;_; and before reaching Sk.
The next lemma ensures that asymptotic properties of the processes X and X are comparable.
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Lemma 4.5.1. For any ¢ € (0,1) and P-a.e. w there is N = N(w,¢) such that

> Eu(Tk—Ti) <&” (4.5.3)
qn<k<2gn
forn > N. Moreover
T, =T, a.s. for large (random) n.

Proof. Fix k € (qn,2qs]). To describe the quenched mean of Ty, — T}, = ’]I‘f,C - Tﬁc we need to
calculate the time the trajectory X, after it hits Si_1, but before reaching S, spends below
Sp,,- For this purpose we proceed as in the proof of Lemma 2.3.3, that is we decompose

My Npm

Tr—Te=Y_ Y Fp(jm), (4.5.4)

m=1j=0
where M), denotes the number of times the walk visits .S}, from the right in the time in-
terval (T, ,,Ts,), N is the number of consecutive left excursions from S, after hitting it
from the right, and F}, (j,m) is the length of the corresponding excursion. Note that NN, is
geometrically distributed with mean p,,, and variance pp, (1+ pp,). Thus, by formula (2.3.14),

N
E. [Z E,. (j, m)] = pp, EuF,, = 2W,, (4.5.5)
j=0

Next, observe that for any m > 0, P,, [My = m] = rs™~!(1 — s), where
r=P3 [Ty, < Ts,]

and, invoking once again the gambler’s ruin problem,

< Tg]=1- L P [T

S, 1
s =Py [Ty ;
Prnt1

P

" >T5k].

We may easily calculate the mean of M} and use the formulae (2.2.5) to express it in terms
of the environment. We get, after simplifying,
r

BoMi = 17— = &llpt16-1, (4.5.6)

Therefore, by (2.2.1), (4.5.5) and (4.5.6),

Eu [Tr — Ti] = 28I, 41,6—1W, (4.5.7)

Now we are ready to prove (4.5.3). We have
P[ > Eu(Te —Ty) > s”} <e ™ D B2600, 4161 Wp, ] < CeT (B P,
n<k<2qn n<k<2qn
where v € (0,1) is as in (4.2.2). Then, by the Borel-Cantelli lemma,
P[ > Eu(Tr—Tk) 2" io. } =0,

gn<k<2qn
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which gives (4.5.3). Finally we write
Tl — T T 7\ k—Pn
P[T # Ti] = E [Py,[Tx — Tx > 1]] < E [Ew(Tx — Tx)] < C(Ep?)
to infer our final claim by yet another appeal to the Borel-Cantelli lemma. O

The advantage of introducing the new process X is that it behaves similarly to X and
from the point of view of limit theorems this change is indistinguishable. However, here one
can indicate independent pieces: {X} ke(Ts,, Tsy, | are P-independent.

4.5.2 Proof of Theorem 4.2.4

From now on we assume that § < 1; in particular F§ = oo. We are ready to describe the
required properties of the environment. The definition of the sets below depends on several
parameters, but first of all it depends on our hypothesis on £ (for > 1 we will choose slightly
different sets). Given d < D, b < B, and € > 0 let

—2
— E
U, (d,D,b, B,e) = {ak; € (¢n, 24n) Sk = Sopn (d, D),M <, Skt (b,B)},

ag+1 Ak+1 Q41

where G, is the length of the left excursion of X from Sj before hitting S, + 1. Of course
E,Gr < E G} and Var,Gj, < EwGi. We want to consider environments which belong to
infinitely many sets U,. However, given w, we want to have some freedom of choosing all the
parameters. The lemma below justifies that the measure of these environments is one.

Lemma 4.5.2. Assume that conditions (4.2.1) and (4.2.2) are satisfied. Then the event
U= ﬂ {limsupUn(d,D,b,B,E) : d,D,b,BeQ", d<D,b< B, &> 0}

has probability one.

Proof. Since in the above formula the intersections are essentially over a countable set of
parameters (one can obviously restrict to the rational parameter ¢), it is sufficient to prove
that for fixed parameters d < D, b < B and € > 0,

P [lim sup Un] =1,

for U, = U,(d, D,b, B,e). Observe that the events {U, }en are independent, because U,, de-
pends only on {w; }je[p, 2, and thanks to (4.5.2) the sets {[pn, 2¢n]nen are pairwise disjoint.
Thus, invoking the Borel-Cantelli Lemma, it is sufficient to prove that there is §o > 0 such
that for large indices n,

P[U,] > b. (4.5.8)
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We need to estimate probabilities of all the events which appear in the definition of U,.
Denote

Vi ={(Sk — S2p,)/ars1 € (d, D)},
V2 = {Ewéi/ak+1 < s}, (4.5.9)
Vi1 = {&+1/ar1 € (b, B)} .

To estimate the probability of V;!, observe that thanks to (4.5.2) we have ag_op, /g1 — 1
for any k € (qn, 2qy]. Therefore, since 5 < 1,

i k _

PV] =P [Z%nﬂ@ff 2 ¢ (g, D)] 2225 € (0,1).
ak—2p, Ak+1

Recalling that Ewéi < EwGi, which is a stationary sequence, we obtain Ew@i/ak LA 0, i.e.

P[V;?] — 1. Next, observe that jP[¢;/a; € (b, B)] — &' > 0 as j — oo. Let us introduce an

auxiliary family of sets

Vil ={Vj € (k,2qn) &;/a; ¢ (b, B)}.

For large n,

PIV,] = ﬁP[fj/aj ¢ (b,B)] > ﬁ <1 — 25/) > <1 _ 25/) s S 39

sk ik J n

Observe also that the sets {V;?,, N Vk4+1}ke( | are pairwise disjoint. Therefore, for large n,

qn,2qn

PUy] 2 P[ U wnvwnvdn Vk4+1]
qn<k<2qn

= > PWInWVIP[VEL]P V]

=

§6'e39 1 68e 3 log?2
P R
gn<k<2qn

In conclusion, the probabilities of U, are bounded from below, which entails (4.5.8) and
completes the proof. ]

Proof of Theorem 4.2.4 for 5 < 1. In view of our hypothesis (4.5.2), the Borel-Cantelli lemma
yields
P[3e > 0 Sy, > ag,e i0.] =0.

Therefore, invoking Lemma 4.5.2, the set

UN{3e >0 Sop, > ag,e 0.} (4.5.10)

has probability 1. From now on we fix w from the event above which also satisfies the claim
of Lemma 4.5.1.
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Assume that, for fixed w,

T, — E,T,

Kn

=Y, n — 00, (4.5.11)

for some random variable Y.
We fix parameters d < D, b < B and ¢ > 0. Take two sequences (n,;)men and ky,, €
(Gnp s 24n,, | such that
weVi NVZ NVE 4,

where all the sets were defined in (4.5.9). We can additionally assume (removing a finite
number of elements of the sequence if needed), that for all indices m

SQpnm < ag,,€- (4.5.12)

Lemma 4.5.1 says that, given w, the difference (T,, — E,T},) — (T, — E,T},) remains a.s.
bounded, hence (4.5.11) yields

=Y, n — 00. (4.5.13)
Rn
Consider the following decomposition:
T - E,T
Skm+1 w4 Sk, 1 =V Vi + W - W + Zo, (4.5.14)
RSk +1
where
TSkm - EUJTSkm /{Skm
Vin = ) Ump = ——
K‘Skm K“Skm+1
Ty, 11— EJT} &
W, — —kmtl © kmtl Wy = —FmtL (4.5.15)

2
5km"l‘l /isk’m"'l

i I
Z - Tk?rn'i‘l — EwTkm"l‘l
m — .

K S +1

Random variables V,,, and (W,,, Z,,) are P,-independent. By (4.5.13), V,,, converges in dis-
tribution to Y,,, whereas W,,, by Lemma 4.3.1, converges to 2¢9 — 1. Therefore we need to
understand the behaviour of both deterministic (given w) sequences (U )men, (Wm)men and
of the sequence of random variables (Zy,)men-

Let us start with estimates of v, and w,. In the case 8 < 1, k,, = n?, hence

2 2 2 2
bk, 11 S RSy s S (D + B +e)ag, 1

Using the estimates in the definition of the event U, (d, D,b, B, ) gives

1-9)- <D+dB+s>2<Um<(1+5)' (gi;)z (4.5.16)
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and

(1) <D+bB+€)2 < wm < (145)- <§)2. (4.5.17)

Now let us consider the sequence Z,,. We want to prove that it converges to 0 in probability.
Since our argument will invoke the Chebyshev inequality, we need to bound the quenched
variance of T;m +1- Note that on the considered event, recalling (2.3.13), we have

7l J— J—
Var, Ty, 41 < &kt Var,Gr,, + & 1(EuGr,,)* < 2ea}, B> (4.5.18)
Observe that for any 1 > 0, using the Chebyshev inequality and (4.5.18), we have:

=1
Vaerka < 2¢B* -1
22 S 2 A1
Sk +1

=l =l
Pul|Zm| > n] =Py, HTka - EwTkm+1‘ > n“Ska] <

One can easily see that for any fixed d and D one can construct sequences (by,)men,
(Bm)men, (km)men such that by,, By, — 00, by, /By, — 1 and inequalities (4.5.16) and (4.5.17)
hold. Then v,, — 0, w,, — 1 and Z,, P9 0. Since the sequence (Vp,)n, is tight, we have

T —E,T
Stmt1 7 PO Shn Ly Wi 4 T = 20 — 1.

K Sk +1

So, if the limits (4.5.11), (4.5.13) exist, both must be equal to Y, = 29 — 1.

Next, fixing all the parameters b, B, d, D observe that both sequences (vp,)m, (Wp)m are
bounded, therefore we can assume, possibly choosing their subsequences, that they are con-
vergent to some strictly positive v and w, respectively. Since the families of random variables
{Vin}m and {W,, },, are independent, we conclude

20 — 12 Y, L (20, — 1) +w(20, — 1), (4.5.19)

where 19, ¥, are independent copies of ©}. However this equation cannot be satisfied e.g. by
(4.1.1). That leads to a contradiction and proves that the limit (4.5.11) cannot exist. O

Proof of Theorem 4.2.4 for B > 1. We proceed similarly as in the previous case, but this time
we need to redefine the sets U,,. Let

2
Un(b,B,¢e) = {Hk € (qn, 2¢x] B |Gl <e Sk € (b, B)}.

M
Q41 Ak+1

Reasoning exactly as in the proof of Lemma (4.5.2) we prove that under conditions (4.2.1)
and (4.2.2), the event

U:m{limsupUn(b,B,s) :b,BeQt, b< B, &> o}

has probability one.
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We consider the formula (4.5.14) and since in this case x, = a2, by (4.5.15), we have
Um — 1 and b2 < wyy < BQ,

because, by the strong law of large numbers, Sy, +1/Sm, converges to 1 a.s. Taking into
account (4.5.18) and the calculations below we have

=l
Var,T 2ea3 B2
PwHZm‘ > n] < 20.)2 k}m+1 < Zm‘f’l

a
Skpm+1 Skm-+1

— 0 a.s.

for any B, because by the strong law of large numbers a,,/ag, — 1 a.s. This proves Z,, s 0.

Now we can repeat the arguments from the previous proof. Fixing the parameters b and
B we conclude that (w,)men is bounded, therefore we can assume that it converges to some
w # 0. Invoking (4.5.14), we obtain

Y, LY, +w(29, — 1), (4.5.20)

where Y,, and 9, are independent. That leads us once again to a contradiction. ]
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Chapter 5

Favourite sites of a random walk 1n
moderately sparse random
environment

In this chapter we present the limit theorems for maximal local times of RWSRE under the
annealed measure. We consider only the case of moderately sparse environment, that is, we
assume that E{ < oco. The following is an extract from [19] with alterations done by the
author to keep consistency with other chapters.

5.1 Introduction

Let, for k < n,
Lig(n)=|{m< T, : X, =k} (5.1.1)

be the local time, i.e. the number of times the walk visits k before reaching n. Our object of
interest is the limiting behaviour of the maximal local time, that is the variable maxy<, Lk(n),
as n — o0o. We shall present two cases in which an annealed limit theorem holds for this
sequence of variables, with Fréchet distribution in the limit.

As was described in Section 3.1 concerning limit theorems for hitting times, the shape
of these theorems depends on the interplay between the drift and the sparsity. A similar
dichotomy is seen for the local times, however the crucial assumption is no longer (3.1.6).

In the first case it is the drift that drives the limiting behaviour of local times. It may be
seen as a generalization of results obtained by Dolgopyat and Goldsheid in [12, Theorem 4]
in the setting of i.i.d. environment. However, the techniques used in [12] were different from
those presented here. In this chapter we follow the method proposed by Kesten et al. in [18]
when examining the hitting times, that is we rephrase the question posed for the walk into
the setting of an associated branching process. This method proves useful both in the case
of dominating drift and the complementary case, in which it is the tail behaviour of £ that
determines the shape of the limit.

o1
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Throughout this chapter we shall use a model slightly different from the one defined in
(1.1.3). That is, we put

Ant1  if k=S, for some n € Z,
Wi =
1/2  otherwise.

Observe that in (1.1.3) we allowed for the dependence between the length of k’th block and
the drift at Sk, which is its right end. In this chapter, when examining the case of dominating
drift, we allow for dependence between the length of the block and the drift at its left end. In
the case of dominating sparsity we shall assume £ and A to be independent, so that we only
change enumeration of drifts. Definition (1.1.3) used so far is the one given by Matzavinos et
al. in [20], while the setting used here is the same as in [6, 7]. This change of convention arises
naturally from time reversal coming with the associated branching process which we introduce
in Section 5.3.

The chapter is organised as follows: in Section 5.2 we present the statement of our results.
Section 5.3 introduces the branching process associated with the walk and presents some of
its properties. The proofs of the main theorems are given in Sections 5.4 and 5.5.

5.2 Annealed limit laws for the maximal local time

In this section we present our results. Relations (2.2.6) remain our standing assumptions, i.e.
we examine the RWSRE which is transient to +o00. We consider two sets of assumptions:

Assumptions (A): For some « € (0,2),

o Ep =1,

Ep®logt p < oo;

the distributions of p and log p are non-arithmetic;
E¢@ OV < o6 for some § > 0;

E£%p® < 0.

Note that without loss of generality we may assume that a4+ § < 2. In this case the limiting
behaviour of maxima is determined mostly by the parameter «, that is by properties of p; it
is a generalization of the result known for the walk in i.i.d. environment. We shall prove the
following:

Theorem 5.2.1. Under assumptions (A), there is a constant cq > 0 such that for all x > 0,

maxg<y Lr(n)

lim P >z| =1—e G,

n— 00 nl/a
It turns out that the crucial assumption in this case is that E€*t9 < co. Different behaviour
appears when ¢ does not have high enough moments. Consider the following:

Assumptions (B): For some 3 € [1,2),
e P[¢ > z] ~ 27P¢(z) for some slowly varying ¢;
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e Epft% <1 for some § > 0;
e ¢ and p are independent;
e if § =1, assume E¢ < oo.

In this case we may also assume that 5+ § < 2. Observe that we do not assume that there
exists « such that Ep® = 1. However, if it does exist, then a > 8 and E£* = co. Since £ has
regularly varying tails, a good scaling for maxima of (§,)nen is a sequence (ay,)nen such that

lim nP¢ > a,] = 1. (5.2.1)

n—oo

It turns out it is also a good scaling for maxima of L.
Theorem 5.2.2. Under assumptions (B), there is a constant cg > 0 such that for all z > 0,

maxy<, Li(n)

lim P Sl =1—e*”

n—o0 G,

The exact forms of constants c,, cg will be given during the proofs.

We conclude this section by remarking that in the moderately sparse environment it is
enough to consider the sequence of maximal local times along the marked points. Note that
(an)nen given by (5.2.1) is regularly varying with index 1/4.

Lemma 5.2.3. Assume that E < oo. If there exist constants ¢ > 0, v > 0 and a sequence
(b(n))nen which is reqularly varying with index 1/~ such that for every x > 0,

maxkggn Lk(Sn)
b(n)

lim IP’[

n—oo

> x} —1—e @,
then for every x > 0,

lim P | 22%ksn 211 Li(n) >g| =1—e (@/FDeT
n—00 b(n)

Proof. Denote, for n € N,
vy =inf{k >0 : S, > n}.

Then the assumption E£ < co and the law of large numbers guarantee that P-almost surely

Vp n—ooo 1

AL —
n E¢

Denote, for m € N, M(m) = maxy<s,, Lx(Sm). Since S,,_1 < n < S,,, we have, for any
e>0,

P [b(n)"" max Ly(n) >z| > P [b(n) "My, — 1) > 2]

0<k<n
>P[b(n) 'M(n(1/E¢ —¢) — 1) > x| — P[|1/EE — v, /n| > €]
—— 1 —exp(—c(1/E{ —e)x™7),
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where we used the fact that

b(n(1/E¢ — ) — 1)

b(n) - (1/136 _'E)l/fY

since b(n) is regularly varying. Similarly,

P |b(n)~" max Ly(n) > z| <P [b(n) ' M(v,) > z]

0<k<n
<P [b(n) ' M(n(1/E¢ +€)) > z] + P[|1/E€ — vy /n| > €]
2% 1 — exp(—c(1/EE + &)™),
which ends the proof since € > 0 is arbitrary. O

5.3 Auxiliary results

Instead of examining the local times explicitly, we pass to a branching process associated
with RWSRE. In this section we describe the construction of this process and prove auxiliary
lemmas which we will use in both examined cases.

5.3.1 Associated branching process

An important property of a transient simple random walk on Z is its duality with a branching
process. Consider a walk (X;,)nen such that Xy = 0 and X,, — oo almost surely, evolving in
an environment w = (wg)rez. Recall that, for n € N,

T, =inf{k e N : X, =n}
is the first passage time and, for k < n,
Li(n) =|{m < T, : X, =k}

is the local time, i.e. the number of times the walk visits site k before reaching n. First of all,
note that the transience of the walk implies that, almost surely, the walk spends only finite
time on the negative half-axis. That is, for any sequence b,, — oo,

maxj<o Li(n)

by — 0 P-a.s.

Therefore, when examining the limit theorems, we may restrict our analysis to the variables
Ly (n) for k > 0.

The visits to k > 0 counted by L(n) may be split into visits from the left and from the
right, that is,

n o Xm =k}
Tp: Xpm1=k—1,Xpn=k}+|{m<T, : Xpno1=k+1, X, =k}
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Foe

A
A\

/ .
2 //.

Figure 5.3.1: Exemplary path of a simple walk and corresponding realization of a branching
process. Immigrants (marked in red) correspond to arrivals to new sites. The subtrees corres-
pond to the excursions of the walk; the first excursion from 7 and its corresponding subtree

were marked in blue.

Moreover, since the walk is simple, it makes a step from k — 1 to k when it visits site k for
the first time. After that, it may make some excursions to the left from k; such an excursion
always begins with a step from k to kK — 1 and ends with a step from k — 1 to k. Therefore,
to count all the visits the walk makes to given sites, it is enough to count its steps to the left.
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That is, for fixed n € Nand 0 < k < n,
Lyn)=14+{m<T, : X1 =k, Xpn=k—1}+|{m < T, : X1 =k+1, X;, =k}
=14 Z1 + Z,

where Zp = [{m < T, : Xm—1=k+ 1, X, = k}| is the number of visits to point &k from the
right. The main observation is that the process given by Z; = Zn—k has a branching structure.
Every step from n — k to n — k — 1 occurs either before the walk discovered the site n — k + 1,
or between consecutive steps from n — k + 1 to n — k. That is,

Zk+1
d E: (4)
Zk+l = Gn’kﬂ
i=1

where G (7)

e for j < Zj, counts the number of steps from n — k to n — k — 1 between j’th and

j+ 1'th step fromn — k+ 1 to n — k, and Gf,fﬂ) counts the number of steps from n — & to
n — k — 1 before the first visit to n — k 4+ 1. Observe that, due to the strong Markov property
of the walk, the variables Gfﬁc are i.i.d., independent of Zj, and have geometric distribution
with parameter w,,_. Therefore, Z = (Zk)ken is a branching process in random environment
with unit immigration; note that we do not count the immigrant, so that Zy = 0. Moreover,

for any fixed n € N,
d
(Lk(n))ogkgn = (1 + ank‘+1 + ank)ogkgn . (531)

In particular, if X is a random walk in a sparse random environment, its associated branch-
ing process is a branching process in a sparse random environment (BPSRE). If in the above
construction we consider the walk stopped upon reaching a marked point S, the branch-
ing process starts from one immigrant and evolves in the environment divided into blocks of
lengths given by (&,_)ren; within the blocks the reproduction is given by the law Geo(1/2),
while the particles in the k’th marked generation are born with the law Geo(\,_x). When
examining the process Z, it is convenient — and valid, since the environment is given by an
i.i.d. sequence — to reverse the enumeration, so that the block lengths are given by (&x)ren
and reproduction law in k’th marked point is Geo(Ag). The process Z may be then defined
formally as follows: for any fixed environment w, under P,,,

ZO = 07
Zk—1+1
7eS )
7=1

where the variables (G,(Cj )) jen are independent of Zj_1 and each other, and
An if k=5, for some n € N;

GV 4 Geo(w for wp =
g () ‘ 1/2  otherwise.

Whenever examining a BPSRE, we will distinct the population at marked generations with
bold letters, that is, for example, Z,, = Zg,, .
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Figure 5.3.2: Schematic picture of the process Z. Horizontal blue lines represent marked
generations. Within each block between marked generations, the triangular area represents
progeny of immigrants that arrived in this block. The coloured region represents process Y.

Recall that by Lemma 5.2.3, it is enough to analyse the sequence of maximal local times
along the marked points. Due to (5.3.1) we have, for any n € N,

max Ly(Sn) =1+ max (Zk + Zii1). (5.3.2)

0<k<Sn 0<k<Sn

Therefore, to prove Theorems 5.2.1 and 5.2.2, we will examine the maximal generations of the
corresponding branching process.

For k € N, we will denote by Y* the process counting the progeny of immigrants from
k’th block, i.e. those arriving at times Sx_1,Sr—1 + 1,...5r — 1. Let, for j > 0, Y]k denote
the number of descendants of these immigrants present in generation Si_1 + j. Observe that
the process Y* starts with one immigrant at time j = 0; it evolves with unit immigration and
Geo(1/2) reproduction law up until time j = & — 1. The last immigrant arrives at this time,
and the particles at time j = & are born with the law Geo(\x). From there on the process
Y* evolves without immigration (see Figure 5.3.2).

We will use the convention that ij =0 for j < 0, so that

_ k
Zn=) Yo .
keN

Observe that the processes Y* are independent under P,, and identically distributed under P.

The branching process in a sparse random environment was studied in [7] for the purpose
of proving annealed limit theorems for the first passage times. An important observation is
that the transience of the walk implies quick extinctions of the branching process. Let

70=0, 7, =inf{k>71,_1:7Z; =0}
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be the extinction times (note that we only consider the extinctions at marked generations).
Observe that when the extinction occurs, the process starts anew from one immigrant. Thus
the sequence (7, — Ty—1)n>1 is i.1.d. under P, and the extinction times split the process Z into
independent epochs. The following is Lemma 4.1 from [7]; it implies that the extinctions occur
rather often in the case of transient RWSRE.

Lemma 5.3.1. Assume that Elogp < 0 and Elogé < oco. Then Em < oo. If additionally
Ep® < 00 and EE° < oo for some € > 0, then there exists ¢ > 0 such that Ee“™ < co.

5.3.2 Estimates of the processes related to the environment
Define -
R’I’L == 1 + pn + pnpn-‘,—l + ce = Z ]'_‘[Tl,k?’ (5.3.3)
k=n—1
for II,, , defined in (2.2.1). Then the following relation holds:

Ry =14 paRusi1. (5.3.4)

Moreover, the sequence (R, )nez is stationary under P. Observe that if Ep? < 1 for some v > 0,
then ER] < oo (see the proof of Lemma 2.3.1 in [4]), whereas under (A), the distribution of
p satisfies the assumptions of Kesten-Goldie theorem (see [4, Theorem 2.4.4]), thus

P[Ry > 7] ~ coz™®
for some constant ¢,. Therefore
P[Ry > 2] < Cya™"  for some C,, < 0o and all z > 0, (5.3.5)

whenever either Ep? < 1, or Ep? = 1 and Kesten-Goldie theorem holds for R;. As can be
seen in the proofs of Lemma 6 in [18] and Lemma 5.6 in [7], in the case of dominating drift
it is Ry from whom the total population of the process Z (which corresponds to first passage
times of the walk) inherits its annealed tail behaviour.

Let, for m € N, the potential ¥ be defined as

Uy = for k € [Sn, Spi1). (5.3.6)

As we will see, maxima of the potential determine the limiting behaviour of maximal generation
of Z in the same way as R; determines the asymptotics of the total population. Let

Mym = max (Ve + Won kg 1)- (5.3.7)
Then the sequence (My m)men is stationary under P; denote by My its generic element.
Observe that
My <2 max Wy =2maxIl, < 2R,
k=S ’ n>0 ’

= 1_1
thus
EMJ < oo whenever Ep? < 1. (5.3.8)
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5.3.3 Auxiliary lemmas

The following lemma, concerning a classic Galton-Watson process, will be used repeatedly to
estimate the growth of BPSRE in the unmarked generations.

Lemma 5.3.2. Let (X,)n>0 be a Galton-Watson process with Xo = w9, reproduction law
Geo(1/2), and no immigrants, and let (X, )n>0 be an analogous process with unit immigration.
Then the following hold for any N € N:

E X — 20)*| <8N 3.
[glg%(( k — T0) ] 8Nz, (5.3.9)
E [I&&J@(Xﬁ] < 16(N? + Nzg + 23). (5.3.10)

Proof. Since the process (Xj)ren is a martingale with mean zy, Doob’s maximal inequality
implies
E [ﬁ%(xk — xO)Q] <AE(Xy — 20)? = 4VarXy.
Now, a standard calculation gives
VarXN = 2N$0,

which implies (5.3.9).
Observe that X,, = X/, + I,,, where X’ denotes the descendants of the initial 2o particles,
and I denotes the progeny of immigrants. The processes I and X’ are independent, and X’ has

the same distribution as X. Moreover, the process (X, )nen is @ non-negative submartingale,
thus by Doob’s maximal inequality,

E [r&a&( )‘(,3] <A4E [X}] =4 (VarX}y + Varly + (EXy + Ely)?) .

We have already examined the mean and variance of X},. To calculate moments of Iy,
we may express I as a sum of independent copies of X. Alternatively, we may use the duality
of I and a simple symmetric random walk. It implies that Iy equals in distribution to the
number of times the walk hits 0 from the right when crossing the interval [0, N + 1] for the
first time. By (2.1.1), the probability that the walk passes from 0 to N 4 1 without returning
to 0 from the right, is 1/(N + 1). Therefore Iy ~ Geo(1/(N + 1)), from which it follows that

ElIy =N +1, Varly =N?+ N.

Hence
E [X%] = 2Nz + N? + N + (20 + N 4+ 1) < 4(N? + Nz + ),

which ends the proof of (5.3.10).
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The next two lemmas will be of use to us both under assumptions (A) and (B). Therefore
we shall consider the following set of assumptions:

Assumptions (I'): for some v < 2,
e Ep? <1 and (5.3.5) holds,
o E&V/? < o0,
o Ep167/? < .

Let U, be the progeny of the first immigrant residing in generation n, with the convention
Up = 1, and denote U,, = Ug,. For fixed N € N, let Uk for k = 1,..., N be copies of the
process U = (Up)nen, evolving in the same environment and independent under P,,. That is,
(Zé\; UM)nen is a BPSRE with N initial particles evolving without immigration. Although
the first part of the following lemma is analogous to results presented in [18, Lemma 3| and
[7, Lemma 5.6], we provide the full proof as it gives some insight into the properties of the

process U.

Lemma 5.3.3. Assume (T'). Then for some constant Cy,

N
P [Z YUk >zl <Nz, (5.3.11)
k=1n=>0
N
P [Z > UE - Nyu| > x| <N, (5.3.12)
n>0 k=1
Moreover,
N
k —
P l%z Uk > 2| <COINYZ™, (5.3.13)
k=1
N
P [Z 5, max Uk -0k > x] < CNY/2p7, (5.3.14)
n>1 k=1
Proof. For fixed n > 1, under P,
q Us, -1
U, < Y al,

where G,gn) are random variables with law Geo(),), independent of Ug, —; and each other. In
particular,
(n) _ (n) _ 2
EuG, " = pn, VaroG~ = pn+ pp,.

Since in generations Sy,_1+1,....S,—1 the process evolves with offspring distribution Geo(1/2),
standard calculation gives

Ew[USn,lﬂUn_l] = Un—l and Varw(Ugn,ﬂ[Un_l) = 2(&1 - 1)Un_1.
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This in turn implies

Ew[Un|Un—l] = pn[Un—l,
Ey[(Un — PnUn—1)2|Un—1] = (pn — P% + 2P%§H)Un—1

In particular E,U,, = Iy ,,.

(5.3.15)

Observe that the processes U* evolve without immigration and the extinction time of each
Uk is stochastically dominated by 7y, which is finite P-a.s. by Lemma 5.3.1. In particular,
with probability 1 the series

Sy

k=1n=0
is indeed a finite sum. Recall the sequence R defined in (5.3.3) and observe that, by (5.3.4),

ZZUIC ZZU n+1 - pn—l—an-‘rZ)

k=1n=>0 k=1n>0
N — _
= (Z(Uﬁ - PnUﬁ—1)> R,i1+NRy
n>1 \k=1
and thus
N N
S ) n (St wit )
n>0 \k=1 n>1 \k=1
Therefore
N N
P [Z > U - Ny, > x] <P [Z > UE - pu Ul | Rpyr > :c]
n>0 k=1 n>1 k=1
and
N N ) )
P !ZZUQ > 93] <P [Z > (UF = paUE )| Ruga > 2/2| + PINRy > /2]
k=1n>1 n>1 k=1

Observe that for any n > 1, R, is independent of (U — p,,UF ). Thus for any x > 0,

N N
P Z Z(‘Ufi - anZ—l) n+1 > x] ZP Z(Uﬁ - PnUZ—l) Rn—i-l > :r/2n2]
n>1 k=1 n>1 k=1
N
_ Z/ Rpy1 > x/2tn?|P Z(Uﬁ —paUE_)| € dt]
n>1+10,) k=1
N
<C, Z/ (z/2tn®) P | > (UF — p,UE ) edt]
n>1"[0,00) =1
N ol
=27Cyaz™7 ZnQWE Z(Uﬁ —paUF_ |,
n=1 k=1
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where the second inequality follows from (5.3.5).
The relations (5.3.15) imply that for any fixed n, under P, Zévzl(U,k; — paUF_ ) is a sum
of independent centered variables; in particular, using formulae (5.3.15), we obtain

N 2
E, (Z(Uﬁ - anfL—l)> = NE,(Us, — paUp-1)°
k=1

= N(pn + 20760 — p7)EuUn—1
= N(pn + 29721§n - pi)Hl,nfl-

Therefore, conditional Jensen’s inequality and subadditivity of the function a — 27/2 (recall

v < 2) give
N g N 2\ /2
IS SETEIED o CH S
n>1 k=1 n>1 k=1

= N/ Z HQ’YE((Pn + 2P%€n - P%)Hl,n—l)wz
n>1
< NV/? Z HZW(EP7/2 + QEpvgwﬂ)(Epfv/?)nfl.
n=1
The assumptions of the lemma guarantee that the series is convergent and thus for some
constant C' > 0,

N N v
P Z Z(Ug —pUF_ | Rpy1 > 2| <200, 277 Zn%E Z(Uﬁ — paUF_ )
n>1 k=1 n>1 k=1
< CNV/Qx*V,

which proves (5.3.12). Invoking (5.3.5) once again, we conclude that

N N
P [ZZU’; > :c] <P [Z (Z(Uﬁ — pntu,’;l)> Ry > x/2

k=1n>1 n>1 \k=1

< ONY2(2/2)™7 + C,NY(x/2)77,

+P[NRy > /2]

which proves (5.3.11).
To show (5.3.13), decompose
N r N
maxz Uk > ZC] =P |max max Uf > x]
k=1 1

]20 T’L}O Sn<j<sn+l k

P

r N
<IP’Z max U'»“>m]

Sn<j<S, J
>0 k=1 nxJ n+1

N
~

r N
> (U§+ max yUf—Uﬁ\)>x]
Sn<]<Sn+l

[n>0 k=1
N
ZZ max ]UJI-“—[UQA] >x/2],
Sn—l<j<sn

N
ZZUQ > /2
n>1 k=1

Lk=1n>0

+P
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which means that (5.3.13) follows from (5.3.11) and (5.3.14). To show (5.3.14), note that, by
Lemma 5.3.2,

E, [S max  |U; — UMP] < 8B UF | = 86,111, 1.

n71<j<5'n
Therefore
N N
k_ ik k _ ik 2
P [ZZSnrflgjiSn Ui —=Up_q| > /2| < ZIP’ Sn,??j}isn Ui = Up_q| > x/4n ]
n>1k=1 n>1 Lk=1
2\~ NY/2 2\
< (@/an?)INPE (Ew o, max U = Upa >
n>1
<N/ 227 2(471)2787/2]357/2(Ep7/2)n*1
n=1
:C"NV/%_”’,
for some constant C” > 0, which proves (5.3.13) and (5.3.14). O

Let Y = (Y,,)nen be a copy of the process (Y,!),en. That is, Y starts with one immigrant
in generation 0 and for the next £& — 1 generations evolves as a Galton-Watson process with
unit immigration and reproduction law Geo(1/2). The last immigrant arrives in generation
&1 — 1; particles there reproduce with distribution Geo(A1), giving birth to the first marked
generation Y; = Yg,. From there on the process evolves without immigration, with particles
in each marked generation Y,, = Yg, being born with Geo(\,) distribution, and Geo(1/2) in
consecutive blocks of lengths given by &, — 1 for n > 2.

&1
Y
& - !
&3 Y,
&4
Yy
&5

Y5

Figure 5.3.3: Schematic picture of the process Y. Horizontal blue lines represent marked
generations. The immigrants arrive only in the first block.

Lemma 5.3.4. Assume (T'). Then for some constant Cs,

P [max Y, > x] < Cor (B (Bu¥2_))" +EY]). (5.3.16)

n=1

If additionally EEY < oo and EE7pY < oo, then for some constant Cs,

n>1

P [max Y, > x] < Csz77. (5.3.17)
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Proof. We have

nz>1 n<S1 n>S,

P [maxYn > a:} <P [max Y, > x] +P [maXYn > :c] ) (5.3.18)

For the first £, —1 generations Y evolves as a Galton-Watson process with unit immigration
and reproduction law Geo(1/2), therefore (Y,?),<s, is a submartingale with respect to P,,.
Using first Markov’s, then Jensen’s, and finally Doob’s maximal inequality, we obtain

v /2
_ _ . /2
Pl >o] <om () <o e (mpgn) < ommag)

If additionally E£7 < oo, then by Lemma 5.3.2,

E, maxY;? < 1662,

n<&1

thus

P [maXYj > x] < 1672E¢7 2.
J<S1

To estimate the second term in (5.3.18), observe that

Yq
d
(YS1+j)jeN = (Z U]k> )
k=1

JEN
where U*’s are (independent under P,,) copies of the process U, independent of Y; under P.
By Lemma 5.3.3,
P [max Y, > x} < C1EY{z77,

n=51

which concludes the proof of the first part of the lemma. If E€7"pY < oo, we may estimate

EY/. Under P,,
Y§1—1+1

Y, & Z G,
k=1

where G, ~ Geo(\1) are independent of Y¢, 1 and each other. Moreover, as was explained in
the proof of Lemma 5.3.2, Y¢, 1 ~ Geo(1/£1) under P,,. Therefore

E,YT = Eo [(Ye,—1 + 1)(20% + p1) + (Y g + Ye,1)pi] = 26001 + &1p1.
Jensen’s inequality and subadditivity of function z — 27/2 give
EY] < E (E,Y2)"? < 22E07 + BE&O/2p/? < o,

which proves (5.3.17).
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5.4 Proof of Theorem 5.2.1

In the proof of Theorem 5.2.1 we will use the fact that the extinctions divide process Z into
independent epochs. That is, we first determine tail asymptotics of the maximum up to time
St -

For any A > 0 denote 0 = 0(A) = inf{n : Z,, > A}. The next lemma is an analogue
of Lemma 4 in [18] and can be proved the very same way, that is by examining E,,[Z|Zj,_1]
using methods we’ve seen in previous proofs.

Lemma 5.4.1. For any firzed A >0, 0 < E[Z% 15<7,] < 00.

The main proof strategy is as follows: we choose sufficiently big A and argue that neither
the particles living before time S, nor the descendants of the immigrants arriving after this
time contribute significantly to the examined maximum. Therefore its behavior is determined
by Z, particles in the generation S, and their progeny.

Let us first take care of the particles alive before time S, .

Lemma 5.4.2. For any fized A,

P Z = oy,
[m n>4 o(z™%)

Proof. Fix A and let x > A. The only generations before time S, in which the population
size may exceed x are the unmarked ones. However, since Z; < A for k < o, the maximum
of Z in generations Si_1 + 1,... S — 1 is stochastically dominated by M ,;,4, the maximum of
Galton-Watson process with Geo(1/2) offspring distribution, unit immigration and A initial
particles, evolving for time &;. Observe that

IP’[ max Zn>a:} gP[max M,;4>x]+IF’[ﬁ>x5/2}

n<SoASr; k<xb/2
< 20/2p [MlA > x] + P {71 > x‘s/ﬂ .

Since a + § < 2, by Markov’s and Jensen’s inequalities,

P (M > 2] < 2R (By(M{)2)

Lemma 5.3.2 implies that
B, (M{')? < 16(&F + A&y + A)

a+6)/2

and thus, since z — ! is subadditive,

25/2p [MiA > 2] < p—0—8/21gla+6)/2 (E§a+5 + A+0)2Re(a+9)/2 | Aa+6> = o(z™).
The second term may be bounded using Lemma 5.3.1, that is
P {7'1 > xé/ﬂ < e @ *Eem = o(x™?),

which ends the proof.
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The next lemma assures that the contribution of progeny of immigrants arriving after S,
is negligible. Recall that Y* counts the progeny of immigrants arriving in k’th block, that is
in generations Si_1,S;,-1+1,...5; — 1.

Lemma 5.4.3. Fiz e > 0. There exists Ai(e) such that for A > Ay(e),

T1
k —a
}P’[ Z I:ngiiyn > 6x] Lex ™™ (5.4.1)
k=041

Proof. We have

1 00
k _ k+1
P L E 1;13{( Y, > ex] =P [ 1 Locken max Y, > ex]
=0 =

i =
0o

< P[a<k<ﬁ,m§¥YfH >€:1:/2/f2] .
nz
k=1

Observe that the event {¢ < k < 71} is defined in terms of Z;,...Zg,, while the process
Y*+1 evolves in the environment given by (&, pj) for 5 > k + 1, hence is independent of
Zi,...2Zs,. Moreover, the second part of Lemma 5.3.4 applied with v = o gives tail bounds
on the maximum of Y**+1. That is,

o0 o0
ZIP |:O' <k <7, max VP > 8%/2k2:| = ZP[U <k<m]P [maXYfH > ex/2k>
k=1 =l k=1 =1

<C3Y Plo <k <m(ea/2k”) "
k=1

= C32%(e2) ™ Y K*P[r1 Lo<r, > K]
k=1
= (C32%2a + 1) lem K [7’120‘+1 locr ]
Since ET2*T! < 0o and o(A) L oas A — 00, one may find A;(e) such that for A > A;(¢)
(5.4.1) holds.
O

We already gave bounds on the generations sizes of particles alive before time S, and those
coming from immigrants arriving after that time. What is left is investigating behaviour of
the particles residing exactly in generation S, and their progeny.

For k > S, let V; ;. be the number of progeny of the particles from generation S, residing
in generation k£ and let V,, = Vg, ; in particular, Z, = V,,. Recall the variables W,
defined in (5.3.6).

Lemma 5.4.4. For any € > 0 there exists Aa(e) such that for A > As(e),

P I: lIﬁI;&‘ng(Va’k + Vo’7k+1) — Zg II;II%X(\IIU+17]€ + \I/g+17k+1) >ex,0 < 7'1] < ex “E [Zg ]10<71] .
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Proof. We begin by estimating the difference of maxima within one block. Observe that the
potential W is constant within each block, therefore for any n € N,

max (Vor+ Voga1) —7Z max (You1p+VYouiprt
Sn<k<5n+1( o, U,+) USn<k<Sn+1( o+1, 0+,+)

< max (Va,k + Va,k+1) - 2Z0H0'+1,n

Sp<k<Spy1—1

+ |VU,Sn+171 + VO’,Sn+1 - ZJHU+1,n - ZUHU+1,TL+1’

Let us estimate the first ingredient. Since

max Vor + V. =2V, + max Ver +V, -2V
Sn<k<Sn+1fl( o,k O',kJrl) on Sn<k<Sn+1fl( o,k o,k+1 cr,n)a

we have

max Vor =V .
Sn<k<sn+1| > "’")

max (Vo,k + Va,k—l—l) - 2ZUHO'+1,7L

Sn<k<Sn+1—1

<2 <|Va,n — Zs11

The second ingredient may be estimated simply by

|VU,5’n+1—1 + VU,SnJrl - Z0H0+1,n - ZUH0+1,TL+1’
< ’Va,n—i—l - ZJH0'+1,n+1| + |V0',n - ZO'HU-‘y-l,n‘ + ’VU,Sn.,_l*l - Va,n‘v

which gives

max (VO' k+ mG—i—l) — Lo max (\Ija+1,k + \Ila—i-l,k—i—l)

Sn<k<sn+l ’ Sn<k<sn+1
g 3‘Va,n - ZO'HO'-‘y-l,n’ + 3 max |V0',k - an’ + |Vo,n+1 - ZUHU+1,TZ+1 .
Sn<k<sn+1

Next, in view of

maX(VU,k + Va,k+1) Z in%x(\paJrl,k + qja+1,k+1)

=0 /0‘

max max (Vyp+ Vypi1) —maxZ max (You1p+ Vouiprt
n>o Sn<k<5n+1( % o) n>o ”sn<k<sn+1( o+, o+Lkt1)

%

the above estimations give

max +V, 1 Z max Worike + Vouri ksl
Sn<k<5n+l k Uk+ ) O-Sngk<sn+1( ot 7k ot 7k+ ) ’

P [ Ig%x(va,k + Vort1) = Zo IICHaSX(‘I/oH,k + Vor1k+1)| > €x,0 < 71]

P [4 > Von = Zolloi1n] > e/2,0 <7

n=o

<k<sn+1

SZ s max Vo — Vo, >ex/2,0 < 71] .
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Both ingredients can be estimated by Lemma 5.3.3 applied with v = a. Conditioned on
(0,21,...2Zs,), the process (V,pn)n>s, is a sum of Z, independent copies of the process U.
We have, on the set {0 < 71},

g, Zl, ce ZSU

P [4 > Von = ZoTllgy1n| > 2/2 < Cy(ex/8)™7a/?,

n=>o

which gives

P [4 D Vo = Zollg 1| > ex/2,0 <7

n=o

< 018%(cz) °E [Zg/Q 11(,<n} .
Similarly,

P [3; Sn<1}clg§n+1 WVor —Von| >cx/2,0 < 7'1] < C16%(ex) E [Zg/Z ]la<ﬁ] .

Therefore, for some constant Cs,

|
k=S

max(Vo i + Vo py1) — Zo Ig%X(‘I’a+1,k + Vot kt1)

e =0

>ex,0 < 71}
< Co(ex)E [Zg/Q ]10<T1] .
Finally, for any fixed € > 0, since Z, > A, we have
E [Zg/ 2 L,@} < AR [Z0 1,cr,]

and one may choose As(e) large enough for the claim to hold.

Lemma 5.4.5. There exists cy € (0,00) such that for any fired A > 0,

P |:ZU H;%X(\I/a-i-l,k + \I/g+17k+1) >x,0 < 7'1:| ~ cglE [Zg ﬂg<7—1] % (5.4.2)

=z

Proof. Since the sequence W, is constant on the blocks between marked points, we have

max(Voi1k + Wour1 1) = max (2 L0y 151 V(L + pot1)) Mot

Observe that
10g (21,51 V(1 + por1)) Tn) =Y log(px) +log(2 1, 51 V(1 + puta))
k=1

is a perturbed random walk. By Theorem 1.3.8 in [17], assumptions (A) guarantee that

P {max(2 ¢, >1 V(1 + ppy1)) i, > x] ~ cgx @

n=>0
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for a constant cg € (0, 00) given by
cy = E2% Lgs1 V(L4 p1)® = max(2% Ig, 51 V(L4 pon) T )+

Note that the variables Zy 15«7, and max,>q(2 L¢, ;>1 V(1+pny1)) g 1,0 are independent
under P. Therefore, by Breiman’s lemma,

=0

P [Za H;%X(‘I’aﬂ,k +Voi1 k1) > 1,0 <7

=P [ZU loer Ir?>ac)r<(2 Le,s1 V(I 4 prp1)) o1 > o| ~E[ZG 1ger | cgx™ .

O

The rest of the proof is standard. First, all the lemmas proven so far allow us to determine
the asymptotics of the maximum in time [0, S;,). Then we use the fact that the extinctions
divide our process into independent pieces.

Proposition 5.4.6. For some constant cpr > 0,

P [ max (Z, + Zpi1) > x] ~cyr @,

0<n<Sry

Proof. Fix € > 0 and take A > A(e) := max{A;(g), A2(¢)}. First, observe that

P [SogixsTl(Zn + Zpt1) > x,0 < 7‘1] <P [Oérllggq(Zn + Znt1) > x]

< .
<P [Sagixsﬂ(Zn + Zpt1) > x,0 < 7‘1} + P Légg\)gq(Zn + Zpt1) >

Lemma 5.4.2 ensures that for large enough =z,

P In+ 7, >z| <P|2 Zn>x| <ex” .
s, (B o) 22| <F[2 e 20> ] <o
Recall that by Y* = (ij)jeZ we denoted the process counting the progeny of immigrants
arriving in k’th block, with the convention Y]k =0 for j <0. Forn > S,,

T1
k
Zpy = Vm + Z Vg
k=oc-+1

thus

P max (Vo + V. >z, o<T1| <P max (Z,+ Z >z, 0<T
|:Sg<n<S.,—1( o,n U,n—i—l) ) 1| x Sg§n<57—1( n n+1) ) 1

< _
<P [Sag;;xsn(va,n + Vont1) > (1 =)z, 0 < 71] +P nay

k=o+1

T1
2 Z max Yf > 617]
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and (5.4.1) ensures that
g
k —
IP’[2 Z nnagicYn >5m] Lex %
k=o+1

Finally,

P [ZU max(¥op + Vo i) > (1 +¢e)x,0 < 7'1:|

=0

e[|

m%X(VU k+ VO’ k’—i—l) Lo H;%X(\Ija,k + \I/a,k—i—l)
<P

=0

>ex,0 < 7'1:|

max  (Von + Vopt1) > 2,0 <7
So<n<S 1

+P max Voo + Vort1) — Zg I]gn%x(\llg,k + Wy t1)

=ZPo

<P [Z max Uor +VYori1) > (1 —e)z,0 <7'1]

>ex, o< 71] s
and by Lemma 5.4.4,

|
k=S

max (Vo + Vo t1) — Zo ]ICHaX(‘I’a,k: + Vo kr1)

>ex,0 < 7'1} <ex “EZ5 1o<r].

Putting things together and invoking Lemma 5.4.5 we get that for any ¢ > 0 such that
g(1 —¢e)* < ¢y and for any A > A(e),

0<((T+e) ey —)E[Z7 Locr]
< Timinf 4@ <1 o
< hxlgggfx P [KIS?}S?H(ZN + Zpt1) > m] < hgs;pa: P [Ogrgzg}gﬁ (Zn + Zyy1) > x]

<((1—28)"%w +e)E[ZS 1par,] + 26 < 0.

Observe that this relation implies that both the limits
: (6
A zE [oéﬁﬁn(z"  Znra) > 4 and  lim B [Z (4) L’(AKTJ

exist, are positive and satisfy

lim w[ max (Zo+ Zu1) > 4 = cu lim E |Z5(4) Loayen | = cur

T—00 0<n<Sry

Due to Lemma 5.2.3 and the relation (5.3.2), the next result implies Theorem 5.2.1.

Theorem 5.4.7. Under assumptions (A),

P |n- Y/ T+ Zpat) > x| 2221 — M —a)
n og/ﬁ}én( K+ Zpy1) > exp Enx



5.5. Proof of Theorem 5.2.2 71

Proof. Since the extinctions divide the process Z into independent epochs, an immediate
corollary of Proposition 5.4.6 is that

P|n~ Y max (Zp+ Zip1) > x| 2551 — exp(—cpa™®).
0<k<Sy,
Lemma 5.3.1 implies that E7; < co. Therefore passing from the maximum up to time S,
to the maximum up to S, may be done exactly as in the proof of Lemma 5.2.3. O

5.5 Proof of Theorem 5.2.2

As we have seen in the proof of Theorem 5.2.1, the limiting behaviour of maxima in case (A)
comes from the tail asymptotics of variable My defined in (5.3.7). The assumption E£2H < oo
implies that for every k, max;¢, Y]k is negligible. In terms of the random walk, this means
that the time the walker spends in a block when crossing it for the first time is negligible.
As we will see, under assumptions (B) it is not; the maximal local time is obtained when the
walker crosses a particularly long block for the first time, by their visits to sites within this
block and potentially excursions to the left.

Consider a simple symmetric random walk on Z and denote by Lj(n) the number of
times the walk visits site k before reaching n. Consider (Ls(n))sejo,n] being a piecewise linear
interpolation of (L (n))o<k<n- The Ray-Knight theorem (see [11, Theorem 2.15|) states that

1.
(nLn(l—t) (n)> = (Bt)iepo
te€(0,1]

in C[0,1] as n — oo, where B is a squared Bessel process which may be defined as
B, = [[W()l%, (5.5.1)

for W(t) = (W1(t), Wa(t)) being a standard two-dimensional Brownian motion with W (0) = 0.
By the continuous mapping theorem,

(711 max Li(n), iLo(n)) = (Mg, B(1)), (5.5.2)
where Mp = sup{B; : t € [0,1]}.

With this at hand, we may inspect the maximal local time that the RWSRE obtains when
crossing a (long) block between marked points for the first time. To this end, consider a walk
starting at 0 in the environment that has marked points only on the non-positive half-line,
and stop it when it reaches point N. By Ray-Knight theorem, the limit of maximal local time
in the interval [1, N], where the walk is symmetric, scaled by N, is Mp. As we have seen in
the proof of Theorem 5.2.1, the number of visits in the negative half-line should be controlled
by the number of visits to 1 and the maxima of the potential W.

In the associated branching process, the steps of the walk during its first crossing of a block
between marked points are counted by the process Y. Therefore our goal is to understand
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the growth of maximal generation in the process Y as the size of the first block — in which
the immigrants arrive — tends to infinity. To this end, for any N € N let YY) be a BPSRE
evolving in an environment with fixed & = N and such that the immigrants arrive only in
generations up to N — 1’th.

Lemma 5.5.1. Under assumptions (B),

1
S max(V + YY) = My as N oo, (5.5.3)

where Moo < max(Mp, B(1)My/2) and My is a copy of the variable defined in (5.3.7) inde-
pendent of the Bessel process B.

Proof. To simplify the notation we shall write Y instead of Y (). Observe that (5.5.2) and
the duality between branching process and random walk imply

1 1
(N Jmax (Vi 4 Vi), 3 (Yo + YN2)> = (Mg, B(1)).

However, since the particles in generation N — 1 are children of those from N — 2’th and an

immigrant, born with distribution Geo(1/2), we have
E (YN_1 —Yn_9— 1)2 = E(YN_l —E [YN—l ’YN_Q])Q = Q(EYN_Q + 1) = 2(N — 1),

which, together with Chebyshev’s inequality, implies that (Yy—1 — Yy_2)/N 2.0 and thus

1 Yn-1
(7 g, 0+ ¥ie). 57 ) = (01 B2,

Moreover, the variables Yy, for £ < N — 1 are independent of the environment, in particular of
\Ifl,n, n 2 0.

From here on we proceed as in the proof of Lemma 5.4.4, to show that the maximum in
generations after N — 1'th is comparable with Yy_1My. That is, we use Lemma 5.3.3 applied
with v = B to obtain, for some constant C > 0,

|
k>N

m>ax(Yk + Yiy1) — Y1 lg;ajsfi(‘IJQ,k + Vo kt1)

=

> x} < CzPEYS/? (5.5.4)

for any = > 0. The particles in the first marked generation S; = N are born with distribution
Geo()A1) from those counted by Yy_1 and an immigrant. Therefore we have E,Y; = Npy,
and by Jensen’s inequality,

EY/?/Q g NB/QE,O’B/2

Moreover, we may calculate quenched moments of Y; conditioned on Yy_1 to get an analogue

of (5.3.15). We obtain

2
E|Y1 - pYn-1]” <E (Eu (Y - PIYN71)2)5/

= E ((BuYn-1(pT + p1) + 207 + pl)ﬁ/2 (5.5.5)
< (NP2 11)(2972Ep + EpP/?),
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where the last inequality follows from subadditivity of = — x%/2 and the fact that E,Yy_; =
N —1. Observe that maxy>n (W2, + Vs 441) < 2+ My 2 and by (5.3.8), EMg < 0o. Therefore,
since (Yn—_1, Y1, p1) is independent of (p;);>2, we have

P HY1 %;ag[{(‘l/zﬁ + Vo k+1) — p1YN-1 ll;fl;%(%k + Vo py1)| > 4 (5.5.6)

<27 PE(2 + My)PE|Y; — p1Yv_1|? < O’z P(NF/2 +1)
for some constant C’ > 0 and any x > 0.

Observe that (5.5.4) and (5.5.6) imply that for any fixed € > 0,

max(Yy + Yiq1) — Y1 I}g%i(‘l’m + Uy t1)

7|
k>N

|

>€N]

max (Y + Y1) — Yy ir;ajs;(‘lfg,k + W9 t1)

k>N

> sN/2]

+|

Y, I;?;%{(\I’Z’k +Wokt1) — p1Y¥n-1 %aj%c(\llz,g + Wy gr1)| > 5N/2}

< (eN/2)~" (c*Nﬁ/QEpﬁ/2 +CI(NP2 4 1)) = O(N—8/2).
Finally, by (5.5.5), for any & > 0,
P[Y1 — p1Yn-1| > eN] < e A(NTF2 4 N7F)(202EpP + EpP/?) = O(N /),
therefore the weak limit of

1 1
N rilgé((Yk + Yiy1) = y max <kr<n]\z%x2(Yk + Yit1), Yno1 + Y, Igl}a]if((yk + Yk+1))

is the same as that of

N

1
— max <k1<1113X2(Yk + Y1), Yn—1(1+p1), Yv—1 %%((W1,k + \Illyk_1)>

= %max <k1<n]\3}x2(yk + Y1), YN—1M\p,1>
which is max(Mp, B(1)My/2) by the continuous mapping theorem. O
Remark 5.5.2. Under assumptions (B), EME™ < 0. Indeed, by (5.5.1),

M2 = sup{(Wl(t)2 + W)’ te o, 1]} :

where W7, W5 are independent one-dimensional Brownian motions. Doob’s maximal inequality
applied to Wy, Wy implies that IEM% < o00. Since B+ < 2, it follows that IEME+5 < 00.
Moreover, by (5.3.8), EM£+6 < 00, and since My and B are independent, we have

EMZH SEMETE(1 4 My /2)%+ < oo.
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Recall that the process Y* counts the progeny of immigrants arriving in k’th block. Since
Lemma 5.5.1 suggests that the maximum of process Y* should be comparable with &M
when & is large, we begin the proof of Theorem 5.2.2 by distinguishing large blocks in the
environment. Recall the sequence (a,)nen defined in (5.2.1). Fix € > 0 and let

Ine={k<n: & >can}, I, .={k<n: & <ean}.

)

For fixed n and k < n, we will say that £’th block is large if k € I,, ., and small otherwise.
It follows from the definition of the sequence (ay)nen and regular variation of the tails of
& that for any = > 0,

nP[¢ > zay) — 277, n— 0. (5.5.7)

Therefore, by Proposition 3.21 in [25],

> e /andym) = Fus (5.5.8)
k=1

where P, is a Poisson point process on (0,00] x [0,00) with intensity measure du(x,t) =
Bz B=ldxdt. In particular, as n — oo, the sequence of variables |Inc|, which count the
number of large blocks, converges weakly to Poisson distribution with parameter e 2.

We begin by showing that all the progeny of immigrants arriving in small blocks is negli-
gible.

Proposition 5.5.3. There is a constant Cs such that for any e > 0 and &€ > 0,

limsupP [ max Z ij—Sk_1 > a, | < Cse P00,

>1
n—o00 )z kelﬁhs

Proof. We will use the fact that the extinction times divide our process into i.i.d. pieces. Let
Ny = inf{k > 0: 7, > n}.
Since ETy < 0o by Lemma 5.3.1, the strong law of large numbers implies 0, /n — n := 1/E7

as n — 0o, P-a.s. We have

k - k -
P rglglx E Yitg, ,>¢Can| <P I§1§1X Yits, | Lle<ea, > Ean
kelﬁ’e kgTQnr]

+Plln—nn/n| >n).

The second term tends to 0 as n — oo. Since the extinctions divide our process into i.i.d.
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pieces, we have

2nn Tm
k = k =
P | max Vi sy Leecean > Ean| < D P max > Yis lgcea, > Ean
1z k<Tony m=1 1z k=Tm_1

T1

=2nnP I;1>alx ij,skfl L¢<can > aan]
L7777 k=0

-
k —
< 2nnP ZI?}alXY; Le <can > san]
Lk=0

[ oo
=2nnP Z i< r§1>alx Y]k Le,<can > E_an]
Lk=1 -

oo
< QnUZ]P’ [11 > k] P [n]1>alx ij L¢,<can > 8an/2k:2] ,
k=1 -

where in the last line we used the fact that {71 > k} and the process Y* are independent.
Since the environment is given by an i.i.d. sequence, it is enough to estimate the tails of
the maximum of the process (Y; 1¢,<zq,, )j>1- By Lemma 5.3.4 applied with v = 8 + 4,

_ 2
P max¥; I¢ <ea, > ﬂ?} < Gz (E (EuYZ 1 Lg<ea,)”” +EY] ]lalgsan) :

Jj=
As we have calculated in the proof of Lemma 5.3.4,
EwY§21—1 ﬂ£1<6an =& (fl - 1) 1€1<6anv EwY% = (2f%P% + flpl) 1€1<€anv

therefore
2
E (Ewiffi—l :ﬂ'flgaan)’}l/ < Eg,y :ﬂ'fgaan

and
2
EY] 1¢ <ca, S E (Ewyf Jlglgmn)”/ < (W?E;ﬂ + EW?) E¢" lecea, -

Putting things together, for some constant C' > 0 and any x > 0,

€an
P [m>alej I¢i<ea, > 2| < Cr7"EE 1eceq, < C’a:_v/ t7IP[¢ > t]dt.
Jz 0

By Karamata’s theorem (|3], Theorem 1.5.11) and (5.5.7),

o 1 1
7 IP[E > t]dt ~ ean) 'PE > eay] ~ 7 Pain 7t
[P > it~ —(ea P > el ~
Using those estimates, we obtain, for some constants C,C’ > 0,
o0
P max ij—Sk_l Liey<can) > €an| < CnZP[Tl > k] (Ean/2k?) T Fain!
7 k<Tony k=1
< C'EJVEV*'BET?—H,
which finishes the proof since v = 8+ J and Ele <o by Lemma 5.3.1. 0
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The next step is to investigate the maximal generations among the progeny of immigrants
from large blocks. Although it may happen that the descendants of particles from several large
blocks coexist in one generation of the process Z, we will show later that it is unlikely, so that
we may begin by investigating the maxima of |I,, .| independent processes, each representing
progeny of immigrants from a large block. To this end, assume that our probability space
contains variables {(Ylg’(N))keN 5, N € N} such that

e the processes (Ylg’(N))keN are i.i.d. copies of (Yk,(N))keN,
e the family {(Y]g’(N))keN :j,N € N} is independent of the environment {(&g, Ax) trez-

For any j, N € N denote M]]V = maxk>0(Y,g’(N) —|—Ylgﬁv)) and let D;, = {Yj’\/(éj) = 0}. Observe

that the event D;,, means that the process Y7(&) went extinct at most at its \/n’th marked

generation.

Proposition 5.5.4. Fize > 0 and let A, € o(I ) be such that P[A,] = 1 as n — oo. For
any x > 0,

lim P | max M‘g 1p > xan,An] =1—exp (—x*BEMfo T <a/e —ePP[My > at/s]) .
n—00 JE€In e J Jsm
Proof. Observe that due to our assumptions the event Dj,n depends only on &; and the process
Y7(&) . Therefore we investigate a maximum of variables which are i.i.d. under P.
Recall that |I,,.| converges in distribution to Poiss(e™%). Moreover, conditioning on
| In,e
given by

= k, the examined maximum is a maximum of k£ independent variables with distribution
IP[Mg]an E“§>€an},

for ¢ independent of {Y™), My : N € N} and D,, = {YE% = 0}. In particular,

P Lrg%i Mgkk Ile’n > a:an] =1—-E [(1 —P [Mg > xay, Dy | € > mn])u"vsl ILAH} 559

=1-E [(1 — P [M¢ > zay, Dy | € > mn])u"'s'} +o(1),
where the second equality follows from
E [(1 — P [M¢ > zay, Dy | € > fsan])u”vf‘ ILA%} < P[47).

Note that, since the extinction time of the process Y€ is dominated by 71, Lemma 5.3.1
implies
P[D] < P[r1 > v/n] < e V"Ee™,

and by (5.5.7),

PIDy [€ > ean] < eic\/ﬁE‘anP[f > €an]71 ~ EeMePne= v 5 0
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as n — 00. Therefore, for any fixed € > 0, for n large enough,
P [M¢ > zay, Dy, |€ > ca,] < E. (5.5.10)

By Lemma 5.5.1, My/N = My as N — oo. Observe that the distribution of My
is continuous and thus appropriate cumulative distribution functions converge uniformly; in

particular, for large enough n,

sup |P[Mg >y |& > can] —P[Mo > y/E| € > cay)| < € (5.5.11)
y>0

for My independent of £&. Observe that

PéMy > zan, & > cay)
P[¢ > eay)]

1
P> ca) (/[o,x/s) P> aan P € )+ | PIE> conlPlM € dﬂ)

- PIE > zan/t]
a /[O,x/s) P[€ > 8an] ]P[MOO = dt] + IP)[]woo = iU/E]

P[My > zan/E| € > cay] =

By uniform convergence theorem for regularly varying functions (see (B.1.2) in [4]), for n large

enough,
P[§ > ceay]

up P[¢ > cay)

cz1

- 05‘ < E,
which means that

<E.

Pl > zan/t] x\ B
/[O,x/a P >ea,] (g) P[M € dt]

Hence
‘IP’[M<>o > xan /&€ > eay] — (m_’BE’BEMfO Uafe<afe TP[Moo > x/&?})‘ < g,
which together with (5.5.11) implies
‘IP’ [Me > za, | € > eap] — (w‘ﬁgﬁEMoﬁo Lafo<a/e TP[Moo > x/a])‘ < 2¢. (5.5.12)

Putting the estimates (5.5.10) and (5.5.12) to (5.5.9) and using the fact that |I,, .| = Poiss(¢ ™),

we obtain
1—exp (—5_ﬂ (:L'_’BEBEMEO Uaf<afe TP[Moo = /€] — 35‘))
< hnrgloréfIP [1]:123 Mg, 1¢,>ea, > wan} < hﬁs;p[? [1]:123 Mg, 1, >ea, > wan}

<1—exp (= (PP EME Tar cape +PIMec > w/e] +32) )

which finishes the proof since ¢ is arbitrary. 0
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We are now ready to prove Theorem 5.2.2; rephrased into the setting of the associated
branching process.

Theorem 5.5.5. Under assumptions (B),

— _> _
P [anl Og%i)én(Zk + Zpy1) > :):] 2 1 —exp <—IEM£Ox B) .

Proof. Fix € > 0. For any £ > 0,

P max (Y']-]igk_l + ij—Sk_1+1) > zan | <P [r'ré%x(Zj +Zj1) > xan]
1z k€ln e Ison
< P |2max Z Yk > éa, | +P |max (Yk +YF ) > (x—£&)a
= .]>1 ]7Sk71 n 321 jiSkfl JiskflJrl n
kelg kEln.e

n,e

(5.5.13)

Note that because of (5.5.8) we expect that for large n the set I, . should be distributed
rather uniformly on {1,...n}, so that the large blocks are far from each other. Indeed, since
nP[¢ > ea,] — 7P, for any sequence b, such that b, = o(n),

P[(3k,l € ,e) k#L |k —1] < by <nP[§ > cay] - b,P€ >ea,] =0 asn— oo,

That is, with high probability, large blocks are at distance at least b, from each other. On the
other hand, we know that the extinction occurs very often in our process, which should mean

that as the process evolves, no two bloodlines of immigrants from large blocks coexist at one

Dim = {Y’“ﬁ _ 0}
be an event that the progeny of immigrants from k’th block does not survive more than /n
blocks. Then, by Lemma 5.3.1,

time. Let

P || Di,| < nPlm > v/n] < ne V" "Ee™ — 0

k<n

as n — 0. Therefore the probability of the set

D, = ﬂ Dk,n

k<n

converges to 1 as n — oo and so does the probability of
A ={(Vk,l €L, .)k#1 = |k—1| > 2y/n}.

Moreover, on the set A, N D,, the progeny of immigrants from each large block dies out
before the next large block occurs. That is, max;j>1 3 ey, (Y}k_sk—l + ij—Sk71+1) is really
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a maximum of independent maxima of Y such that k € I, .. Therefore,

k k _ k q_
P r§1>alx (Yig, +Yiig +1) > zan, AnNDy| =P Lrgla}i Mg 1p, . > xan, An] :
k€ln,e ’

By Proposition 5.5.4, this quantity converges to
1 —exp (—x*BEMfo T <a/e —e PP[My > a:/a])

as n — oo. Going back to (5.5.13), we have

1—exp (—x_ﬁEMfo Lafo<a/e —e PP[My > x/e]) < liminf P [max(Zj +Zj) > wan] .

n—oo 7<Sn
(5.5.14)
On the other hand, by Proposition 5.5.3,
) k _ —io\—fB—6 6
hﬂsotipIP’ 2r§1§1;~( Z Yig, , >¢&an| < C5(£/2) e’
kely .
which means that
lim sup P [maX(Zj +Zjq1) > xan} < Cs(/2)7P%°
oo LIS (5.5.15)

+1— exp (—(:c — &) PEME 1y <(0—s)c —¢ PP[My > (x — &) /5]) .
Observe that, since EM5™ < oo (see Remark 5.5.2), we have
e PP[My > x/e] <22 POEMEY 50 ase— 0,
while by the monotone convergence theorem,
EME 1y <n/e > EME  ase— 0.

Therefore passing with € to 0 in (5.5.14) gives

1 —exp <—x_BEM§O> < lim inf P [max(Zj +Zj) > xan] ,

n—r00 j<Sn

and similarly in (5.5.15),

limsup P {maX(Zj +Zj11) > xan] <1—exp (—(:z: - E)*’B]EMfo) ,

n—00 Jj<Sn

which ends the proof since € > 0 is arbitrary. O
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