
Report on the PhD Thesis
“Hardy spaces associated with certain semigroups of linear operators”

by Edyta Kania-Strojec

The thesis under review is composed of four articles:

(A1) “Local atomic decomposition for multidimensional Hardy spaces”, joint work
with P. Plewa and M. Preisner, appeared in Rev. Mat. Complutense;

(A2) “Riesz transform characterisation for multidimensional Hardy spaces”, joint
work with M. Preisner;

(A3) “The atomic Hardy space for a general Bessel operator”, single-authored;
(A4) “Sharp multiplier theorem for multidimensional Bessel operators”, joint work

with M. Preisner, appeared in J. Fourier Anal. Appl.

Each paper discusses a different problem, but they have as a common theme the analysis
of Hardy spaces associated with semigroups.

As is well known (see, e.g., the seminal work of Fefferman and Stein [5]), the classical
Hardy space H1(Rn) can be characterised in many equivalent ways. This includes the
atomic decomposition

(1) H1(Rn) =

∑
j

λjaj : aj atom, λj ∈ C,
∑
j

|λj | <∞

 ,

where atoms are functions a : Rn → C such that

(2) supp a ⊆ B,
∫
a dµ = 0, ‖a‖∞ ≤ µ(B)−1

for some ball B ⊆ Rn; here µ is the Lebesgue measure. There is also a Riesz transform
characterisation

(3) H1(Rn) =
{
f ∈ L1(Rn) : ∂xj (−∆)1/2f ∈ L1(Rn) for j = 1, . . . , n

}
,

as well as a (radial) maximal function characterisation in terms of the semigroup gen-
erated by the Laplacian or one of its fractional powers:

(4) H1(Rn) =

{
f ∈ L1(Rn) : sup

t>0
|exp(−t(−∆)γ)f | ∈ L1(Rn)

}
,

where γ ∈ (0, 1].
A local variant h1(Rn) of the above Hardy space has also been studied (see, e.g., the

work of Goldberg [6]). Again, multiple equivalent characterisations hold for h1(Rn).
For example, h1(Rn) admits an atomic decomposition similar to (1), where however the
atoms are “local atoms at scale r0” for some fixed r0 > 0 (namely, either functions a
satisfying (2) for some ball B of radius at most r0, or functions of the form |B|−11B
for a ball B of radius r0). Similarly, h1(Rn) has a Riesz transform characterisation
analogous to (3), where the Riesz transforms ∂xj (−∆)1/2 are replaced by the “local

Riesz transforms” ∂xj (c0−∆)1/2 for some c0 > 0. Furthermore, h1(Rn) has a maximal
function characterisation analogous to (4), where the supremum in the definition of the
maximal function is restricted to t ∈ (0, t0) for some fixed t0 > 0.

An important area of research in the last few decades has been the analysis of local
and global Hardy spaces in settings other than the Euclidean, including the problem
whether the equivalence of characterisations similar to the above hold true in more
general settings. One of the settings that have been studied in depth is that of doubling
metric measure spaces (or spaces of homogeneous type; see, e.g., the work of Coifman
and Weiss [1]). In this setting, local and global Hardy spaces can be introduced by
means of atomic decompositions as in the Euclidean case; moreover (possibly under
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additional technical assumptions), maximal function characterisations similar to the
above can be proved in terms of semigroups satisfying Poisson-type bounds (see, e.g.,
the work of Uchiyama [9]).

Articles (A1) to (A3) in the thesis are specifically devoted to the study of Hardy
spaces

(5) H1(L) =

{
f ∈ L1(X) : sup

t>0
|exp(−tL)f | ∈ L1(X)

}
associated to a semigroup of operators exp(−tL) acting on L1(X) for some measure
space (X,µ), and to prove equivalent characterisations of H1(L) in terms of suitable
atomic decompositions or Riesz transforms. In all the cases considered there, X is actu-
ally an open subset of Rn (more specifically, a product of intervals), and the underlying
measure µ is either the Lebesgue measure or a weighted variant thereof. Nevertheless,
the aforementioned classical theory does not directly apply to the semigroups considered
in (A1)-(A3), and some interesting phenomena emerge.

A particularly striking feature of the results obtained in these three papers is the
mixture between “local” and “global” aspects of the Hardy space theory (which does
not appear in the aforementioned classical results on Rn or on spaces of homogeneous
type, but is already present, e.g., in previous work of Dziubański–Zienkiewicz [4] on
Schrödinger operators). Namely, while the supremum in the maximal function in (5) is
taken over all t > 0 (thus suggesting that the space under consideration is a “global”
space), the obtained atomic decompositions are “local” in nature. More precisely, to
each studied semigroup exp(−tL) the authors associate an “admissible covering” Q of
X made of cuboids, and the atoms in the obtained decomposition of H1(L) are either
functions of the form µ(Q)−11Q for some Q ∈ Q, or functions a : X → C satisfying (2)
for some cuboid B contained in a Q ∈ Q (or a slight enlargement thereof). It should be
pointed out that the cuboids in an admissible covering Q may have different diameters;
this is another important difference compared to the aforementioned classical results, as
here the “scale” of the atoms can change from point to point, thus taking into account
the specific “geometric” properties of the semigroup exp(−tL) under consideration.

A common strategy underlying these three papers appears to be the comparision of
the semigroup exp(−tL) under consideration with another “model” semigroup exp(−tL0)
to which the aforementioned classical theory of Hardy spaces applies (specifically, in
(A1) and (A2), L0 is the Euclidean Laplacian or a fractional power thereof, while in
(A3) L0 is a classical Bessel operator). In order to obtain the atomic decomposition
of local type for H1(L) associated to an admissible covering Q, the following three
assumptions on exp(−tL) are essentially considered:

(a) The semigroup exp(−tL) has a nonnegative integral kernel Pt satisfying upper
Gaussian- or Poisson-type bounds (of the same type of those satisfied by the
kernel Ht of the model semigroup exp(−tL0)).

(b) Pt satisfies an additional “far-diagonal integrability condition” of the form

sup
y∈Q∗

∫
X\Q∗∗

sup
t>0

Pt(x, y) dµ(x) . 1 ∀Q ∈ Q

(here Q∗ denotes a suitable enlargement of the cuboid Q).
(c) Finally, the “remainder” Pt−Ht satisfies a near-diagonal integrability condition

for small times:

sup
y∈Q∗

∫
Q∗∗

sup
0<t<d2γQ

|Pt(x, y)−Ht(x, y)| dµ(x) . 1 ∀Q ∈ Q

(here dQ is the diameter of Q).
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It should be pointed out that the additional “far-diagonal integrability” stated in (b)
above for exp(−tL) is not satisfied by the model semigroup exp(−tL0), and its validity
for exp(−tL) explains why the atomic decomposition of H1(L) has a local character.
Indeed, under the above assumptions, the proof of the atomic decomposition of H1(L)
goes, roughly speaking, as follows: by using assumptions (a) and (b), one can localise
in time and space the maximal function defining H1(L); at that point, the assumption
(c) on the remainder can be used to replace the semigroup exp(−tL) in the maximal
function with the model semigroup exp(−tL0), and then use the already known atomic
decomposition for H1(L0) to derive the one for H1(L).

Additional assumptions of the same kind as (a)-(c) above, but involving derivatives
of the integral kernels, are considered in the paper (A2) to deal with the more delicate
Riesz transform characterisation; again, the strategy is to reduce the problem for L to
already known characterisations for L0, by means of suitable estimates for the remainder
Pt −Ht.

The strategy presented in the three papers (A1)-(A3) proves to be fairly effective, in
that the authors show that the required assumptions are satisfied in a number of differ-
ent examples (including Bessel and Laguerre operators, as well as certain Schrödinger
operators on Rn). In light of this flexibility, a natural question would be whether
the “model operator” L0 must be one of those considered in those papers (Euclidean
Laplacian or classical Bessel operator) or could be a more general operator to which the
classical theory of (local and global) Hardy spaces applies. Indeed, the assumption (c)
on the remainder Pt −Ht stated above appears to be a quite “rigid” one if the model
semigroup Ht is fixed, and there might be opportunities to exploit a similar strategy
to prove more general and “robust” results. Alternatively, one might ask whether as-
sumption (c) could be replaced by a more “intrinsic” one that only involves Pt and the
covering Q, and avoids the comparison with another semigroup. In any case, all these
questions appear to indicate that not only do the presented results constitute some
interesting contributions to the theory of Hardy spaces associated with operators, but
they are also likely to stimulate further research in the area.

The remaining paper (A4) included in the thesis is somewhat different in character
and focus. Indeed, the paper is devoted to the proof of a sharp spectral multiplier
theorem for classical multidimensional Bessel operators

Lα = −
N∑
j=1

(
∂2xj +

αj
xj
∂xj

)
on (0,∞)N ,

where α ∈ (−1,∞)N . The space (0,∞)N , with the Euclidean distance and the weighted
Lebesgue measure dµα(x) =

∏
j x

αj
j dxj , is a doubling metric measure space of homo-

geneous dimension

Qα =
∑
j

max{1, 1 + αj}.

Moreover, the Bessel operator Lα is a positive self-adjoint operator on L2(µα), and the
heat semigroup exp(−tLα) generated by Lα satisfies upper and lower Gaussian-type
bounds. As a consequence, a number of classical results apply to this setting, including
the fact that the Hardy space H1(Lα) has an atomic decomposition à la Coifman–
Weiss (see, e.g., previous work of Dziubański–Preisner [3]). Moreover, an Lp spectral
multiplier theorem of Mihlin–Hörmander type holds for Lα (see, e.g., work by Hebisch
[7] and Duong–Ouhabaz–Sikora [2]), yielding the weak type (1, 1) and Lp boundedness
for p ∈ (1,∞) of operators of the form F (Lα) whenever the multiplier F : R → C
satisfies a local scale-invariant smoothness condition of the form

(6) sup
t>0
‖F (t·)η‖Lqs <∞
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for q =∞ and s > Qα/2; here Lqs(R) denotes the Lq Sobolev space of (fractional) order
s, while η ∈ C∞c ((0,∞)) is a nontrivial cutoff.

One of the aims of the paper (A4) is to sharpen the aforementioned multiplier theorem
for the multidimensional Bessel operators Lα. Indeed, the authors succeed in showing
that the smoothness condition (6) on the multiplier can be weakened by taking q =
2 instead of q = ∞. This improvement is obtained by following a general strategy
described, e.g., in previous work by Duong–Ouhabaz–Sikora [2], namely, by checking
that a certain “Plancherel-type estimate” for Lα holds true with an L2 norm instead of
an L∞ norm of the multiplier.

Additionally, the authors show in (A4) that, under the same smoothness assumptions
(6) on the multiplier (with q = 2 and s > Qα/2), the operator F (Lα) is also bounded
on H1(Lα). Actually, they prove their H1 boundedness result in a more general and
“abstract” setting, thus providing a natural Hardy-space counterpart to the general Lp

spectral multiplier theorem of Duong–Ouhabaz–Sikora [2].
Finally, the authors investigate the sharpness of the condition s > Qα/2 in their

multiplier theorem for Bessel operators. To this purpose, in the case N = 1, they study
Lp and weak type boundedness properties of the imaginary powers Liγα (for which
explicit formulas can be derived by “subordination” to the heat kernel), and succeed in
showing that the regularity threshold Qα/2 cannot be replaced by a smaller quantity.

This last result is particularly interesting in the case α > 0, in which case Qα =
1 + α > 1 = N . Indeed, N is the “local dimension” (topological dimension) of the
underlying manifold, and (as Lα is an elliptic operator) a standard transplantation
argument (see, e.g., the work of Kenig–Stanton–Tomas [8]) yields the lower bound N/2
to the optimal Mihlin–Hörmander threshold for Lα. However, the results of this paper
show that, when N = 1 and α > 0, the smoothness condition in the multiplier theorem
cannot be pushed down to s > N/2, and that the global geometry (i.e., the volume
growth at infinity taken into account by Qα) plays a crucial role in this problem.

In conclusion, the thesis includes a number of very interesting results and contribu-
tions to the investigation of several research problems. The material is certainly worthy
of publication, and indeed some of the articles have already appeared in international
journals. The submitted work, including the overall introduction to the thesis, is well
written and of good quality, and demonstrates the candidate’s breadth and familiar-
ity with a variety of techniques. For these reasons, I am happy to confirm my overall
positive evaluation of the thesis.
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