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Gogolok’s PhD thesis makes significant contributions to the model theory of
fields with operators – a subject within Mathematical Logic – . This branch
of model theory somewhat focuses on determining the existence of the so-called
model-companion of a given theory. The model companion yields a suitable setup
to deploy the machinery of first order logic due to the fact that it is model complete,
and hence first-order properties are preserved when passing to extensions that are
models. In the context of fields with operators the existence of a model compan-
ion is usually equivalent to determining whether the existentially closed models
form an elementary class; while the latter makes the companiability problem more
approachable there are still several difficulties one needs to address.

The theory of fields with operators (from a model theoretic point of view) can be
dated back to Robinson’s work on differentially closed fields of characteristic zero
DCF0 in the late 60s; and then Wood’s work in the characteristic p > 0 setup DCFp
in the early 70s. In characteristic zero, the theory DCF0 satisfies tame properties:
it is a complete ω-stable theory with elimination of quantifiers and imaginaries. On
the other hand, in characteristic p > 0, the theory DCFp is complete and stable but
not superstable; it does not eliminates quantifiers nor imaginaries in the language of
differential fields. It does, however, eliminates quantifiers after adding the p-th root
function to the language. It is still unknown whether there is a natural language
in which it eliminates imaginaries. In any case, the theory of differentially closed
fields is the model companion of differential fields.

Later on, Macintyre followed Chatzidakis-Hrushovski studied the model theory
of difference fields. They established the existence of a model companion ACFA.
This theory, while not stable, it is simple (i.e., Shelah’s forking is an abstract
independence relation; in particular, it is symmetric). Furthermore, this theory has
almost elimination of quantifiers.

In 2014, both contexts (differential and difference) were unified by Moosa-Scanlon
using the framework of free operators. Namely, one is given a finite dimensional
algebra D over a field k (with some additional properties) and operator(s) on a
k-algebra R is a k-algebra homomorphism e : R → R ⊗k D. By setting D to be
the dual numbers one recovers the case of derivations; while setting D = k× k one
recovers automorphisms. Moosa and Scanlon then observed that, for any choice of
D, if char(k) = 0 then there is a model companion and it is simple and has al-
most quantifier elimination. Furthermore when D is a local ring, one gets stability
and full quantifier elimination. A few years later Beyarslan-Hoffmann-Kowalski-
Kamensky explored the case char(k) = p > 0 and noted that when D is local and
the unique maximal ideal is contained in the kernel of the Frobenius, FrD, then a
model-companion exists, is stable and eliminates quantifiers after adding the p-th
root function.
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One shortcoming of the above results is that they do not include the case of
derivations of the Frobenius; i.e., additive maps satisfying a Leibniz rule of the form
δ(xy) = δ(x)yp +xpδ(y). One of the main objectives in Gogolok’s thesis is to unify
all above instances (including derivations of the Frobenius) to a single framework.
Before the work of Gogolok, this idea seemed a bit far fetch (at least to me) since
the classical context of Moosa-Scanlon does not allow twisting by Frobenius. It is
indeed quite interesting that this novel framework (namely, coordinate k-algebra
schemes) works uniformly.

In Chapter 1, a good amount of preliminaries are presented, which should aid the
non-familiar reader acquire the necessary knowledge the read the rest of the thesis.
Chapter 2 presents the general framework in which the rest of the dissertation is
situated in. Namely, the notion of a coordinate k-algebra scheme B is presented –
the most relevant point of the definition is that as a group scheme B is isomorphic
to a product of the additive group scheme – and some examples are provided.
In particular, it is noted (Proposition 2.20) that the context of Moosa-Scanlon is
recovered whenever the group scheme isomorphism is also one of k-module schemes,
in which case B is of the form B(k)⊗ := −⊗kB(k). Furthermore, it is also explained
how derivations of the Frobenius can be recover as coordinate k-algebra schemes.
This is followed by a classification of coordinate k-algebra schemes (Theorem 2.17)
when k is perfect. Essentially they are all Frobenius twists of B(k)⊗.

Part of Chapter 2 is devoted to adaptions of known results about extending free
operators to the coordinate k-algebra scheme setup. This is done in a standard
fashion by using results on étale and smooth ring extensions. Then, in 2.3.3, a
construction of the prolongation spaces is performed. This is rather technical,
partly because there is no Weil descent functor available to work with in the general
setup of algebra schemes. Thus, the prolongation construction has to be done from
the scratch. Then, in 2.4.2, an abstract notion of iterativity ϕ is introduced, as a
well as notions of Bϕ-fields, Bϕ-varieties, and nice pairs (B, ϕ). A good amount of
examples are discussed.

In Chapter 3, a class of extensions K is fixed and the study of existentially closed
models is restricted to the class. Natural examples are arbitrary extension, but also
separable extensions and regular extensions. In Theorem 3.14 it shown that, if the
pair (B, ϕ) is nice and the class K is definable, then the class of Bϕ-fields that are
K-closed is elementary (which is one of the main results of the thesis). When K is
the class of all extensions, the model companion is denoted Bϕ-CF.

The rest of Chapter 3 is devoted to study the model-theoretic properties of
the theory Bϕ-CF when B is local (and the unique maximal ideal is contained
in the kernel of the Frobenius). For instance, in Theorem 3.26 it is shown that
Bϕ-CF admits q.e. after adding the p-th root function. Furthermore, Theorem
3.33 shows that this theory is stable and a description of forking independence is
provided. Another interesting result is Theorem 3.47 which shows that being a
PAC-substructure in Bϕ-CF is an elementary property (a desirable property when
studying PAC-substructures of stable theories).
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Referee’s opinion

In my opinion, the thesis is mostly well written and certainly contains strong
results. The candidate demonstrates good working knowledge of the subject and
the state-of-the-art results. It is also clear that they can perform independent
research with potential international impact. Parts of the thesis have already been
published, and I expect that the rest will produce at least one more research output
suitable for a leading journal (possibly in Logic). I do have a few questions and
suggestions below. In particular, I believe there is an issue with one of the cases
covered by nice pairs. Regardless of the answers to my questions (including my
issue with nice pairs), I have a very positive impression of the research work and I
recommend the thesis to be accepted.

Yours sincerely,

Omar León Sánchez
Senior Lecturer of Pure Mathematics
Department of Mathematics
The University of Manchester
omar.sanchez@manchester.ac.uk

Corrections and suggestions

Issue with the commuting case of nice pairs:

(*) The issue is in the proof of Proposition 2.68 and is related to Part (3)
of Definition 2.67. The notion of nice pair includes the case of several
commuting derivations in positive characteristic. Then, in Proposition 2.68,
the third part of the proof is arguing that in such contexts you can get a
finitely generated field extension that contains a and its derivatives (of order
one). But the argument is setting derivations to be zero and claims that
because of this choice the derivations will commute. However, this is not
generally true. Simply take Fp(t, s) where δ1(t) = t and δ2(t) = s (and also
δ1(s) = s and δ2(s) = t). This gives a field with commuting derivations.
But if I repeat the argument on the indeterminate s, I would be extending
the derivations as δ1(s) = 0 and δ2(s) = 0; however, this would yield

0 = δ1(s) = δ1δ2(t) = δ2δ1(t) = δ2(t) = s.

Here one uses that δ1 and δ2 must commute.

Generally speaking I don’t expect Proposition 2.68 to hold for several
commuting derivations in arbitrary characteristic (we know it does not
hold in characteristic zero). While I don’t have a counterexample in pos-
itive characteristic, the problem of extending ’commuting’ derivations in
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this manner is quite subtle in any characteristic. (it might be that the
characteristic zero example could be adapted to positive characteristic, but
I am not sure about this).

If this cannot be fixed, I guess the case of commuting operators should
be removed from the definition of nice pair. Also, see Remark 3.17(5) and
Remark 3.55 (as these are affected).

Minor corrections/suggestions: Xy means page X line y from the top; and Xy

means line y from the bottom.

(1) I’d suggest adding an Abstract.
(2) In 65, there is an extra ’algebra’.
(3) I’d advise expanding the introduction. Discuss more motivation and more

details on what is known. Also, be more precise on the main results of the
thesis (some explicit statements would be good).

(4) In 97, the definition of regular extension should be: L and Kalg are linearly
disjoint over K.

(5) In 102, Fact 1.2(2), should say the Jacobian of (f1, . . . , fn) at a.
(6) In 1110, why fix m? There is another use of m in V1 ∪ · · · ∪ Vm; but this is

not the m you fixed.
(7) In p.11, in the definition of IK(V ) it should be a ∈ V (not a ∈ V (K)).
(8) In 1211, there is a K missing in K[V ]
(9) 1213, there is a typo in ’sat that’

(10) In 1.5, are you assuming k is a field or just a ring? (in 1.3 it was just a
ring)

(11) In the definition of algebraic group, why are you not including ”reduced
scheme”?

(12) In Fact 1.3 (2), are you assuming char(k) = p > 0? Also, is this result only
for algebraic groups (not for group schemes)?

(13) In 145 one T should be T ∗

(14) p.14, (p5) local character, you have |B0| ≤ ω but it should be |B0| ≤ |T |
(15) 156, p should be q
(16) middle of p.17, you say ’Fortunately, not every derivation comes from....’,

why ’fortunately’, perhaps simply use ”Note that not every...”
(17) In Remark 2.8(1), explain what is the ’basic data’ in Moosa-Scanlon. It’d

be good if somewhere (maybe in Preliminaries) you add more details of
the setup and basic data of Moosa-Scanlon and how it differs from your
presentation.

(18) In Remark 2.8(2), I’d suggest ’In general one cannot...’ (refer to Ex.2.10)
(19) In Ex.2.10, please remind us how F is defined. Also, at the end of the ex-

ample you say that when R is of infinite imperfection degree then dimR(F)
is infinite as well. Please give an argument for this.

(20) In Ex.2.10, you should point out that as long as K is not perfect we have
F(K) 6= K[X]/(X2).

(21) Please provide more examples in the spirit of Ex. 2.10. At least, mention
the case of pn-derivations, i.e., δ(xy) = δ(x)yp

n

+ xp
n

δ(y).
(22) In Lemma 2.12, recall what monic ’additive’ polynomials are.
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(23) 234, you say ’there exists an algorithm’, where is this algorithm? Is it in
the literature or you mean that it is contained in one of your arguments?
Please explain.

(24) In Lemma 2.13, is K perfect?
(25) In Notation 2.16, explain how to compute the map Θ
(26) In the proof of 2.17, a couple of β’s should be B
(27) 285, when the field k is perfect
(28) In Ex.2.23, what exactly is BFr⊗ , i.e,, do you require n1 = 0 or not? In this

example you need n1 = 0, but I don’t think this is part of the definition of
BFr⊗ , is it?

(29) In Remark 2.24, you mention how to translate the formalism of B-operators
to the first-order setup. You mention that the coordinate-operators ∂i’s
should be additive and satisfy some form of Leibniz rule. This yields that
the operator ∂ : R → B(R) is a ring homomorphism. But what about
conditions on the ∂i’s that are equivalent to ∂ being a ’k-algebra’ homo-
morphism. In the case where B is of the form − ⊗ B(k) (i.e., the scheme
group isomorphism also preserves the module structure), you can say this by
asking the ∂i’s to be k-linear, but what about in your general set up (where
the isomorphism is only at the group level, not of modules)? Note that at
this point you are not making any additional assumptions (for instance, you
are not assuming that B is local nor that k is perfect). This corresponds
to some equations of the ∂i’s on elements of k, but these equations have to
be worked out.

(30) In Cor.2.30, assume that B is local
(31) Def.2.39, the composition is backwards
(32) Def 2.65, state that ϕ is an iterativity condition, or before the definition

say that from now on ϕ is an iteratitvity condition
(33) Def. 2.67, say that B is a coordinate k-algebra scheme and that ϕ is an

iterativity condition
(34) p.56, in the axioms of KBϕ-CF, you should say ’every Bϕ-variety over k of

type K’
(35) In Theorem 3.16, you should add Assumption 3.10
(36) In Lemma 3.20, doesn’t Fr(kerπ) = 0 imply Lp ⊆ L∂? So, why do you

have Lp ⊆ L∂ as an extra assumption?
(37) Lemma 3.23, K should be K0

(38) in proof of 3.26, you refer to Prop.2.70, but this proposition is in the lan-

guage LλB rather than Lλ0

B , so a comment has to be made on how to apply
the proposition when the countably-many λ-functions are replaced by the
single λ0.

(39) mid p.64, you say B = B(n1,...,ne), are you assuming k is prefect?
(40) In Proposition 3.30 you seem you be assuming that forking independence

in SCFp,e implies algebraic disjointness. But this is not generally the case
in the case where the imperfection degree ’e’ is finite. For this to hold
you should work in the language where you name a p-basis (not just λ-
functions). The same issue appears in 3.31 and 3.32.

(41) In Lemma 3.32, it seems to claim that linear disjointness implies that the
field extension KaM < C is separable. This is not generally the case
(when your ambient model is a monster model of SCF), for this you need
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to know that Ka and M are p-independent over the base field. Again, in
finite imperfection degree this is immediate if you work in the language after
naming a p-basis. In the case of infinite imperfection degree p-independence
is implied by forking independence (you can use full existence to get a
forking independent copy and then the rest of the argument goes through).

(42) In the proof 3.37, there are two definitions of ∂(Xn), which one is it?
(43) Prop 3.38, what are the assumptions on B?
(44) Remark 3.48, what is m? State what DCFp,m stands for.


