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At the very outset let me say that this is an excellent thesis making a substantial contribution

to various aspects of Dunkl Harmonic Analysis and hence we recommend this very strongly for the

award of Ph D degree from Wroclaw University.

This well written thesis deals with several problems of Dunkl Analysis which are of current

interest, the techniques used are varied and modern and there is a vast literature behind every

problem. This is certainly a very technical thesis and it is difficult to describe the results and

put them in perspective without going through a brief history of known results. In fact, there are

more results than necessary to make a very good thesis, and hence commenting on all the results

presented here is really challenging. We therefore will be very choosy and only go through the most

important contributions of the author in every chapter.

By Dunkl Harmonic Analysis we mean Fourier Analysis performed in the Dunkl setting where the

Dunkl transform Fκ and the Dunkl-Laplacian ∆κ play the roles of Fourier transform and Laplacian

respectively. The Dunkl-Laplacian is defined as ∆κ =
∑N

j=1 T
2
j where Tj are certain differential-

difference operators introduced by Dunkl way back in 1975. Here is the setting that allows us

introduce these characters: (i) a root system R in RN and a finite subgroup G ⊂ O(N), called the

Coxeter group, generated by the reflections defined by the roots (ii) a multiplicity function κ which

is a G-invariant function on R and (iii) a G-invariant weight function w(x) = wκ(x) defined in

terms of the roots and κ. The operators Tj possess a family of joint eigenfunctions Eκ(ξ, ·), ξ ∈ RN
playing the role of the exponential: e〈ξ,·〉. The Dunkl transform is then defined by

Ff(ξ) = c−1
κ

∫
RN

E(−iξ, x)f(x)wκ(x)dx

which turns out to be a unitary operator on L2(RN , wκ) sharing several other properties with the

Fourier transform (which is indeed the special case κ = 0).

Having set the stage, we can embark on developing a Dunkl theory closely following the classical

Fourier analysis which in a nutshell means studying singular integrals, maximal functions and Hardy

spaces. But unfortunately, the sailing is not smooth since the measure w(x)dx is not translation

invariant and more importantly, the generalised exponentials Eκ(ξ, ·) are not characters of the group

RN . However, it is possible to define an analogue of translations (generalised/Dunkl translations) by

the formula F(τxf)(ξ) = Ff(ξ)E(ix, ξ) assuming that f ∈ L2(RN , wdx). Using these translations
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we are led to define the Dunkl convolution between two functions by the formula

f ∗ g(x) =

∫
RN

τxf(−y)g(y)w(y)dy.

This generalised translation is clearly bounded on L2(RN , wdx) and the convolution has the ex-

pected property, namely F(f ∗ g)(ξ) = Ff(ξ)Fg(ξ). But the analogy stops here: the boundedness

properties of τx and hence the convolution, on other Lp spaces remain largely unknown.

This poses a major hurdle when we try to prove analogues of classical theorems in the Dunkl

setting. There is no explicit formula for τxf except when N = 1 or when f is radial in which case

there is an interesting and useful formula due to Rösler. Thanks to this, we have an analogue of

Young’s inequality for the generalised convolution at least when one of the factors is radial. This

limited knowledge has been used by several authors in the study of certain convolution operators

such as Bochner-Riesz means and heat semigroup associated to ∆κ. Since the heat semigroup plays

an important role in several problems of classical Fourier analysis, we would like to have a good

understanding of the heat kernel ht(x, y) associate to the semigroup et∆κ . However, the formula

ht(x, y) = c−1
κ t−N/2e−

1
4t

(|x|2+|y|2)Eκ(
x√
2t
,
y√
2t

)

involves Eκ(x, y) which is not known explicitly. Therefore, a lack of precise estimate on the heat

kernel is another problem to tackle.

Therefore, any improvement on the known estimates on the heat kernel or any extra information

on the generalised translation τx are extremely important in Dunkl Harmonic Analysis. In her

JFAA paper, written in collaboration with J. Dziubanski and J-P. Anker, Agnieszka has proved

good upper and lower bounds for the heat kernel ht(x, y). In Chapter 3 of this thesis she has further

improved the estimates by proving the following, see Theorem 3.1:

ht(x, y) ≤ C
(
1 + t−1|x− y|2

)−1 1

max{w(B(x,
√
t), w(B(y,

√
t)}

e−
c
t
d(x,y)2

where d(x, y) is the orbital distance between x and y. As the generalised Poisson kernels pt(x, y)

and Bessel potentials J{s}(x) are expressible in terms of the heat kernel, sharp estimates for them

are also proved in the same chapter. This chapter also contains an improved estimate for translates

of compactly supported radial functions and these estimates are used in later chapters.

As a consequence of the Rösler’s formula for τxf for radial functions, it can be proved that

supp τxf ⊂ O(B(x, r)) whenever supp f ⊂ B(0, r). A very important result proved in Chapter

4 of this thesis is Theorem 4.1 where the above mentioned support property is proved for all

f ∈ L2(RN , wdx). The idea of the proof is very ingenious- it is based on the observation that for

any polynomial p of degree d on RN one has

p(x)gL(x) =
d∑
l=0

∑
|β|≤l

cl,βT
β(gL+l)(x)

where gL(x) = (1−|x|2)L+ and T = (T1, T2, ..., TN ). As functions of the form p(x)gL(x) are dense in

L2(B(0, 1), wdx) the above formula combined with the fact that τx commutes with T β allows one
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to prove Theorem 4.1. Let us mention two important consequences of this support theorem: (i)

the inequality

‖τy(f ∗ ϕ)‖L1(w) ≤ C(r1(r1 + r2))N/2‖ϕ‖∞‖f‖L1(w)

valid for all f ∈ L1(RN , wdx) with supp f ⊂ B(0, r2) and for all continuous radial functions ϕ with

suppϕ ⊂ B(0, r1) (see Theorem 4.8) and (ii) improved estimates for the translations of a Schwartz

class function ϕ (see Proposition 4.23).

The estimates of various kernels established in Part I of this thesis are put to good use in Part

II where several problems of Fourier analysis are studied in the Dunkl setting. To start with, in

Chapter 5 the boundedness properties of the maximal function

Mϕf(x) = sup
t>0
|f ∗ ϕt(x)|, ϕt(x) = t−Nϕ(

x

t
)

associated to the Dunkl convolution have been investigated. Observe that when ϕ is the char-

acteristic function of the ball, Mϕ reduces to the Hardy-Littlewood maximal function which was

studied by this reviewer in a joint work with Y. Xu using a long winding argument. Thanks to the

estimates proved in Part I, Agnieszka has given a nice proof that the general maximal function Mϕ

is bounded on Lp(w), 1 < p ≤ ∞ and is of weak type (1,1) under some assumptions on the decay

of ϕ and some of its derivatives, see Theorem 5.4.

In Chapter 6, an analogue of Hörmander-Mihlin multiplier theorem for the Dunkl transform

has been established. The problem is to find sufficient conditions on the function m called the

multiplier, so that the operator Tm defined via F(Tmf)(ξ) = m(ξ)Ff(ξ) is bounded on Lp(w). In

the context of Fourier transform this problem has a very long history with an extensive literature.

If W s
2 stands for the Sobolev space (based on Fourier transform) the Hörmander’s theorem asserts

that Tm is bounded on Lp(RN ) whenever m satisfies the (uniform local Sobolev) condition

sup
t>0
‖ψ(·)m(t·)‖W s

2
<∞, s > N/2

where ψ is any radial bump function. Earlier works on this problem dealt only with N = 1 or with

radial multipliers. In this thesis, the author has proved that Tm is bounded on Lp(w), 1 < p < ∞
and is of weak type (1,1) under the stronger assumption that m satisfies the above condition for

some s > N (Theorem 6.4). The conjecture that the result is true under the weaker assumption on

m, namely the condition holds only for s > N/2 is still open. However, in Theorem 6.12, the author

has shown that the conjecture follows once we have the following estimate: for all f ∈ L1(w),

sup
y∈RN

‖τyf‖L1(w) ≤ C‖f‖L1(w).

This brings out the importance of the boundedness of the translation operator τy on L1(w).

Fourier multipliers are known to be examples of singular integrals and the same is true of mul-

tipliers for the Dunkl transform. It is therefore natural to study singular integral operators of

convolution type defined as

Kf(x) = p.v

∫
RN

τxK(−y)f(y)w(y)dy
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where the kernel is assumed to satisfy the standard Calderon-Zygmund conditions with extra degree

of smoothness. Once again, the main difficulty in carrying out the classical proof is the lack of

boundedness of the translation operator. However, making use of extra information (proved in

Part I of the thesis) on τxf when f has some regularity and decay, the author has proved weak

type (1,1) and Lp(w) boundedness for 1 < p < ∞, see Theorem 7.5. By establishing Cotlar type

estimates, she has also studied the maximal function associated to the singular integral operator.

In Chapter 8, boundedness properties of various square functions are studied. As they can be

realised as singular integral operators whose kernels are taking values in Hilbert spaces, the author

has developed a unified approach to study such vector valued operators.

In the context of graded homogeneous groups, Dziubanski and his collaborators have a developed

a method to study kernels of semigroups generated positive Rockland operators. It is natural to

sudy such operators and associated semigroups in the Dunkl setting. In Chapter 9 of this thesis,

the author has considered operators of the form

L = (−1)2l+1
m∑
j=1

T 2l
ξj

where ξj , j = 1, 2, ..., ,m spans RN . If ut stands for the kernel associated to the semigroup Ut = e−tL

then by homogeneity arguments it is easy to see that ut(x) = t−N/(2l)u(t−1/(2l)x). Following the

ideas used by Dziubanski et al she has proved the estimate |u(x)| ≤ Ce−c |x|
2l

2l−1
(Theorem 9.2) and

the improved estimate

|ut(x, y)| ≤ C V (x, y, t1/(2l))−1e
−c d(x,y)

2l/(2l−1)

t1/(2l−1)

in Theorem 9.3. In order to achieve these estimates she studied certain sesquilinear forms on

suitable weighted Sobolev spaces leading to an analogue of Garding’s inequality. A theorem of

Lions on semigroups generated by operators has played an important role in proving the kernel

estimates. This chapter has an interesting blend of techniques from partial differential equations,

operator theory and harmonic analysis.

In a joint work with J.-P. Anker and J. Dziubanski, Agnieszka has introduced and studied the

Hardy space H1 as the space of all systems u = (u0, u1, ..., uN ) on R+ × RN satisfying generalised

Cauchy-Riemann equations and a uniform integrability condition. This work extends the classical

theory of Hp spaces developed by Stein and Weiss to the Dunkl setting. The real Hardy space H1
∆κ

is then defined as the space of all boundary values of the first component u0(x0, x1, x2, ...., xN ) of

u ∈ H1 as x0 → 0. In the same work, she has proved various characterisations of H1
∆κ

in terms of

non-tangential maximal functions associated to Poisson and heat semigroups, and also in terms of

Dunkl-Riesz transforms. In Chapter 10 of this thesis she has obtained two more characterisations-

(i) in terms of radial and tangential maximal functions and (ii) an atomic decomposition. Of these

two, the latter one in terms of atoms in the sense of Coifman and Weiss is more involved. The

proof has necessitated the study of tent spaces and Calderon’s reproducing formula in the Dunkl

setting. In the following chapter, she has also introduced local Hardy spaces in terms of local
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maximal function associated to the heat semigroup and proved an atomic decomposition and a

characterisation in terms of local Riesz transforms.

Part IV of the thesis deals with Dunkl-Schrödinger operators L = −∆κ + V where V is a non-

negative potential from the reverse Hölder class RHq(w). One of the main goals was to prove an

analogue of the Fefferman-Phong inequality which involves the auxiliary function m defined by

m(x)−1 = sup{r > 0 :
r2

w(B(x, r)

∫
B(x,r)

V (y)w(y)dy ≤ 1}.

Inspired by the works of Dziubanski and Zienkiewicz, she has proved the inequality∫
RN
|f(x)|2m(x)w(x)dx ≤ CQ(f, f)

where Q is the quadratic form associated to the operator L. Another interesting problem studied

is related to the eigenvalue counting function N(L, λ) which is the number of eigenvalues of L less

than or equal to λ. In Theorem 13.1 she has proved both upper and lower bounds for this function.

The final chapter of this thesis deals with an atomic decomposition of the Hardy space defined in

terms of the heat semigroup maximal function associated to the Schrödinger operator L.

The candidate has published five papers, some of them in very good journals, and has five more

posted in the arxiv. Three of her papers are single authored and based on the ’statement of contri-

butions concerning the joint works’ by her advisor, it is clear that her contribution is over 50 per

cent in these joint works. This is quite an achievement for a young graduate student!

This impressive thesis is a piece of serious mathematical work making a substantial contribution

to Fourier analysis in the Dunkl setting. The problems investigated here are all very well motivated,

with solid roots in the existing literature. The author has certainly read through a large number

of papers and mastered several techniques employed by various authors. The proofs of most of

the results proved here are elaborate, very technical and demand a solid background in several

aspects of Fourier analysis. Moreover, the author has taken pains to present the results and proofs

as clearly as possible which makes the well written thesis quite readable.

In conclusion, we are of the opinion that this is an outstanding thesis which deserves to be nom-

inated for the prestigious doctoral dissertations award and hence we strongly recommend for the

same.

With warm regards,

Yours sincerely,

(S. Thangavelu)


